
When Raft Meets SDN: How to Elect a Leader over a Network

Kostas Choumas and Thanasis Korakis
Dept. of ECE, University of Thessaly, Volos, Greece

Email: kohoumas, korakis@uth.gr

Abstract—This paper discusses the benefits in the operation
of a Raft based SDN controller cluster, when the election of
the cluster leader becomes more or less “fair”. Raft is a leader
based consensus algorithm, which is used by the most popular
open-source SDN controllers for replicating the network state. It
requires all state changes to be confirmed by the leader, thus the
leader election is very crucial for the Raft performance. In case
that the inter-controller communication delay is the same for all
controller pairs, the election process is absolute fair, meaning
that the leadership is shared equally among the controllers. In
all other cases, some controllers become leaders more frequently
in benefit or at a cost of the average time required for a network
state update. In this paper, we model this time as a function
of the leadership probabilities of the cluster controllers. We
also model these probabilities as a function of the time that
each controller is waiting after detecting the current leader
failure and before starting its campaign. We configure different
ranges for the controller waiting times, adjusting the leadership
probabilities and decreasing the average response time. Our
model is confirmed by testbed experimentation.

Index Terms—SDN, Raft, clustering, testbed experimentation

I. INTRODUCTION

Software Defined Networking (SDN) is a technology that

decouples the control and data planes, using servers for con-

trolling the operation of the forwarding datapaths or switches.

This is why these servers are called controllers. At first, there

was only one controller for all datapaths of a network, which

was not scalable. Soon, multiple controllers were introduced

to cooperate over the same network, consisting a cluster. Each

controller is responsible for a subset of the network datapaths

and should communicate with all other controllers, in order

for the whole cluster to share the same network state.

The most recent and well-known protocol for reaching

consensus among the controllers is Raft [1]. Raft enhances

Paxos, which is assumed as the “gold standard” algorithm

in distributed consensus [2]. The most popular open-source

SDN controllers, namely OpenDaylight (ODL) [3] and Open

Network Operating System (ONOS) [4], utilize Raft for strong

consistency. According to Raft, all network updates have to

be processed by the cluster leader, even if it is not controlling

any datapath related to these updates. Thus, the average time

needed for an update is affected by the result of the leader

election process.

According to this process, each controller campains for the

leadership when it realizes that there is no existing leader,

and after waiting for a random time interval. This interval

is called election timeout and the controller with the lowest

one, assuming that multiple controllers campaign together,

probably wins. Raft designers propose the selection of this

timeout from the same range for all controllers, which results

to identical leadership probabilities, when all inter-controller

communication delays are equal. However, these delays are

unequal in most cases.

In this paper, i) we model how the leadership probabilities

of the controllers can be adjusted by choosing different ranges

for their election timeouts. The average time needed for a

network update can be decreased, by either increasing the

leadership probabilities of the most central controllers or the

ones receiving more updates. For example, if all controllers

receive equal number of network updates, the average response

time benefits from a central controller as a leader, whereas if

one controller receives the great majority of updates, then this

one should be the leader. As a proof of concept, ii) we also

show theoretically and experimentally, how we can increase

the leadership probability of the central node or share the

leadership equally among all controllers in two bus topologies.

The paper is divided in the following Sections. Section II

presents related work. Section III highlights insights into Raft,

whereas Section IV models Raft performance over a network.

Section V shows our experimentation results and Section VI

concludes the paper.

II. RELATED WORK

The utilization of multiple controllers was initially proposed

by Heller [5], presenting the controller placement problem. In

this work, heuristics are given for placing the controllers in a

network, focusing on the controller-to-switch communication.

There have been numerous publications for improving the

controller placement, taking also care of the inter-controller

traffic, such as [6]. However, most of these works assume that

all controllers have the same role, in contrast to the leader

based structure of Raft. Raft is exploited by ODL and the

ODL controller placement problem is studied in [7], aiming

at minimizing the total control traffic.

In [8], an adaptive consistency model is introduced, which

employs concepts of eventual consistency along with a ‘cost-

based’ approach, where the strict Raft synchronisation is

employed for critical operations. In this way, they improve

the perceived reactivity of the controllers. On the other hand,

in [9], authors aim at the same goal by requiring only strong

consistency and considering both the delay of the controller-to-

switch and inter-controller communications for proposing Raft

based controller placement. They build a model for estimating

the reaction time perceived at the datapaths, however, they

assume a fixed leader (no failures and leader transitions).

In [10], authors present the inter-dependency between the

controller cluster and the datapath network, as well as the

problems caused by this. In [11], Raft performance is evaluated

through Stochastic Activity Networks (SAN), in terms of978-1-7281-5684-2/20/$31.00 c©2020 IEEE

response time and availability. The election timeouts are also

modified in [12] for the purpose of reducing the election

duration.

III. INSIGHTS INTO RAFT

Let’s assume a cluster of nodes using the Raft protocol

for reaching consensus. Each node is a state machine and all

nodes compute identical copies (replicas) of the same state. In

this way, they are able to continue operating even if some

of them are down. Replicated state machines are typically

implemented using a replicated log, which contains a series of

commands that have to be executed by each state machine in

order. Keeping the replicated log consistent is the job of the

Raft algorithm. When OpenFlow controllers use Raft for their

clustering, the replicated log is the set of OpenFlow messages

coming to the controllers and affecting their state.

Raft operation is based on the election of a node as leader,

which is responsible for managing the replicated log. The

leader has to be chosen when a cluster starts or when an

existing leader fails. At any given time, each node is in one

of the three states: leader, follower or candidate. Between the

elections, there is exactly one leader and all of the other nodes

are followers, while during the elections there is no leader

and some nodes become candidates. Followers are passive,

meaning that they do not issue requests on their own but

simply respond to requests from leaders and candidates. The

leader handles all incoming commands (a command applied

to a follower is redirected to the leader). Moreover, the leader

replicates these commands across the cluster, forcing each

follower log to agree with its own. Now, let’s see in more

detail the leader election and the log replication processes.

A. Leader Election

Raft divides time into terms of arbitrary length, numbered

with consecutive integers, which begin and end with an

election. In each election, one or more candidates attempt to

become the leader requesting votes from more than half of

the nodes. In the case of a split vote, none of the candidates

collect the necessary number of votes, thus a new term with

a new election begins.

Raft uses a heartbeat mechanism to trigger the leader elec-

tion. At the initial phase, all nodes begin as followers. A node

remains follower as long as it receives requests from a leader

or a candidate. The leader sends periodic heartbeat requests

to all followers, with a period equal to the heartbeat timeout,

which is slightly higher than the average time it takes a node

to send requests in parallel to all cluster nodes and receive

their responses. If a follower receives no communication over

a period of time called election timeout, then it assumes there

is no viable leader and begins an election for a new leader.

In particular, it transitions to candidate, votes for itself and

issues vote requests in parallel to all other nodes. A candidate

remains in this state until one of the following conditions are

met: (a) it wins the leadership being voted by at least half of

the cluster, (b) another node establishes itself as leader and this

candidate transits to follower, or (c) another election timeout

goes by with no winner because of a split vote.

When the third possible outcome happens, each candidate

times out and starts a new election by initiating another round

of vote requests. Assuming a fixed election timeout for all

nodes, this process could be repeated indefinitely (e.g. all

cluster nodes become candidates simultaneously and vote for

themselves repeatedly). Thus, Raft uses randomized election

timeouts to ensure that split votes are rare and resolved

quickly. The selection of the range of the randomized election

timeout is critical. It has to be an order of magnitude higher

than the heartbeat timeout, but as low as possible. The lower

bound of the election timeout enables the leader to reliably

send the heartbeat messages, while the higher bound is for

preventing long periods of unavailability, since there is no

leader to handle the commands during the elections.

B. Log Replication

Once a leader has been elected, it begins servicing the

incoming commands. Each command sent to the leader is

appended to its log as a new entry. If it is sent to a follower,

it is redirected to the leader and the same process is followed.

The leader issues append requests in parallel to all other nodes

to replicate this entry. When the leader gets the replies from a

majority of the nodes, the log entry is applied to the leader’s

state machine and considered as commited. Subsequently, the

leader resends append requests to the followers for applying

the entry to their state machines.

IV. RAFT OVER A NETWORK

Raft designers assume that the cluster nodes communi-

cate over a mesh network with links featuring equal delays.

However, this is not the case for most real networks, where

different node pairs exhibit different communication delays.

As follows, some nodes collect faster the required votes from

a quorum. Although the election of such nodes facilitates a

faster communication between the leader and the majority of

the followers, it also imposes several considerations if they are

the best choice for leaders, in terms of the average response

time. Let’s see this challenge in the following toy example.

A. Bus network with 3 nodes

Let’s assume the simplest cluster N with N = 3 intercon-

nected nodes n1, n2 and n3 shaping a bus network, where n2 is

located in the middle with equal distance to n1 and n3, as it is

depicted in Figure 1(a). The delay of the link connecting two

nodes is proportional to the distance between them. Each node

ni has its election timeout tout
o +tout

i , where tout
o is fixed and tout

i

is chosen from the standard uniform distribution, ∀i∈ {1,2,3},

with Probability Density Function (PDF) f (τ)= 1 for τ ∈ [0,1]
and 0 otherwise. When n1 is the leader, the delays to the

followers n2 and n3 are d and 2d respectively. Assuming that

heartbeat requests are successfully sent until a n1 failure, the

last heartbeat arrives later at n3 compared to n2, thus n3 starts

counting down to trigger a new election a time interval d

after n2 does. The winner of the next election is n3 if and

h/beat req.

toout + t2out + d

tοout + t3out + 2d
tοout + t3out + 3d

n1 n2 n3

t
ο

o
u

t
+

 t
3

o
u

t

t
ο

o
u

t
+

 t
2

o
u

t

2d

d

h/beat reply

vote request

n
3

ti
m

e

(a) Bus network with 3 nodes.

4d

n1 n2 n3 n4 n5

t ο
o

u
t

+
 t

5
o

u
t

t ο
o

u
t

+
 t

4
o

u
t

t ο
o

u
t

+
 t

3
o

u
t

t ο
o

u
t

+
 t

2
o

u
t

n
5

ti
m

e

to
out + t2

out + d
to

out + t3
out + 2d

to
out + t4

out + 3d

tο
out + t5

out + 4d
tο

out + t5
out + 5d

tο
out + t5

out + 6d

d

…

(b) Bus network with 5 nodes.

Fig. 1. Leadership transition over bus networks with 3 or 5 nodes. (a) n3 becomes leader after n1, if tout
o + tout

3 +3d < tout
o + tout

2 +d ⇒ tout
3 +2d < tout

2 . (b)

n5 becomes leader after n1, if tout
5 +5d < tout

2 +d ⇒ tout
5 +4d < tout

2 , tout
5 +6d < tout

3 +2d ⇒ tout
5 +4d < tout

3 and tout
5 +5d < tout

4 +3d ⇒ tout
5 +2d < tout

4 .

only if its vote request is received by n2, before n2 finishes

its countdown. Otherwise, n2 (that has come back from its

instant failure) votes for itself and gets the vote of n1, which

is closer to n2. This happens if tout
3 +2d < tout

2 , since n3 starts

its countdown after d and the vote request is received by n2 a

time interval d after n3 sends it.

Figure 1(a) illustrates this information. If 2d ≤ 1, the

probability of this event is

p = Pr[tout
3 +2d < tout

2] =
∫ 1

2d

∫

τ2−2d

0
f (τ3) f (τ2)dτ3dτ2

=
∫ 1

2d

∫

τ2−2d

0
1 dτ3dτ2 =

1

2
(1−2d)2. (1)

Modeling the transition from one leader to a new one using

a Markov chain, we get the transition probability matrix P =
[pli : ∀nl ,ni ∈ N], where p11 = p22 = p33 = 0, p13 = p31 = p

and p21 = p23 = 1/2 (p21 and p23 are equal, since n1 and

n3 are symmetrical in relation to n2). Finally, the steady-state

probabilities are π = [π1,π2,π3], where π1 = π3 = (1+ p)/(4+
2p(1− p)) and π2 = (1− p2)/(2+ p(1− p)). After multiple

instant failures of each leader (meaning that leader is down

for a period almost equal to the average election timeout), ni

is the new leader with probability πi, ∀i ∈ {1,2,3}. In case

that d = 0, then obviously p = 1/2 and π1 = π2 = π3 = 1/3.

Commands sent to the nodes are replicated and commited

at different times, depending on the receiver node and its state.

Let’s compute the time t
rep
il required for a command to be sent

to ni and ni inform back that it is commited, when nl is the

leader. If n1 is both the command receiver and the leader, it

needs time t
rep
11 = 2d to send the append requests and receive

the reply from n2. The reply from n3 is useless, since n1 and

n2 consist a cluster majority. The same time t
rep
22 = t

rep
33 = 2d

is needed for n2 and n3 respectively. On the other hand, if the

command goes to n1 but it is not leader, the corresponding

time is either t
rep
12 = t

rep
22 + 2d = 4d or t

rep
13 = t

rep
33 + 4d = 6d,

when n2 or n3 is leader respectively. This time is actually the

sum of the time required by the leader to handle the command

plus the time needed for n1 to redirect the command to the

leader and get the commitment confirmation back. Similarly,

t
rep
32 = 4d and t

rep
31 = 6d, while t

rep
21 = t

rep
23 = t

rep
22 + 2d = 4d.

After multiple failures, the average response time for each ni is

t
rep
i = ∑nl∈N πlt

rep
il , and over all nodes is trep = ∑ni∈N λit

rep
i ,

where λi is the rate of commands to ni (∑ni∈N λi = 1).

At this point, we show how the election timeouts can be

configured for changing the leadership probabilities π and the

average response time trep. One option in to select tout
1 and

tout
3 from a uniform distribution in the range [0,α], with PDF

f (τ/α), while α < 1 for increased probabilities of nodes n1

and n3 to be leaders, since they will most probably start earlier

their campaign. If α ≤ 1− 2d, then probability p of Eq. (1)

changes to

p =
∫ 1

2d

∫

τ2−2d

0
f (τ3/α) f (τ2)dτ3dτ2

=
∫ 1

2d

∫ min{τ2−2d,α}

0

1

α
dτ3dτ2 = 1−2d −

α

2

and π1 = π3 = 1/(2 + 4d + α). In case that 4d < 1 and

α = 1−4d, then the nodes have equal leadership probabilities.

Another option is to change the PDF of n2 to f2(τ/α2).
Assuming that 2d ≤ α2 < 1, then Eq. (1) changes to

p =
∫

α2

2d

∫

τ2−2d

0
f (τ3) f (τ2/α2)dτ3dτ2

=
∫

α2

2d

∫

τ2−2d

0

1

α2
dτ3dτ2 =

1

2α2
(α2 −2d)2,

which is an increasing function of α2. Moreover, π2 is a

decreasing function of p, thus π2 decreases with α2. In this

way, the leadership probability of the central node π2 can be

increased, by decreasing α2.

Depending on the λi rates, the optimal choice for the ranges

of the election timeouts for minimum response time trep, can

be one of the two presented options or something completely

different. Now, let’s proceed with a generalized network.

B. Generalized Network

Now, the cluster has N nodes ni ∈ N , ∀i ∈ {1,2, . . . ,N},

with election timeouts tout
o + tout

i chosen randomly as before

with PDF f (τ/αi). We also denote as F(τ) the Cumulative

Distribution Function (CDF) of the standard uniform distri-

bution, which is F(τ) = τ for τ ∈ [0,1], 0 for τ < 0 and 1

otherwise. The delay between two nodes ni,n j ∈N is di j, with

dii = 0. We assume instant failures again, which means that

previous leader votes in the election for the new leader. In the

event that nl ∈ N is the leader and fails, both ni ∈ N −{nl}
and every other follower nz ∈N −{ni,nl} start their timeouts

after receiving the last heartbeat from nl , which is after delay

dli and dlz respectively. Thus, ni becomes candidate and votes

for itself if its timeout plus dli is less than the timeout of

every other follower nz plus dlz plus the time needed for the

vote request of nz to be received by ni, which is valid if

tout
i + dli < tout

z + dlz + dzi,∀nz ∈ N −{ni,nl}. Otherwise, ni

remains follower voting for one of the nz sent the vote request

earlier. Moreover, ni is voted by n j ∈N −{ni} if the ni’s vote

request is received earlier by n j than any other vote request

(from all other followers nz and n j itself), which requires that

tout
i +dli +di j < tout

z +dlz +dz j,∀nz ∈ N −{ni,nl}.

Heartbeat timeout is slightly higher than 2maxni,n j∈N {di j}
and should be an order of magnitude less than the minimum

of the average election timeouts of all nodes, which is tout
o +

minni∈N αi/2. Assuming this, the probability of a node ni to

be candidate after the fall of leader nl and be voted by at least

all nodes n j ∈ N ′ ⊆ N −{ni} and itself is equal to

pN ′

li = Pr[{ni is at least voted by ni and N
′}]

= Pr
[

⋂

nz∈N −{ni,nl}

{tout
z > tout

i +dN ′

liz }
]

=
∫

αi

0
f
(

τi

αi

)(

∏
nz∈N −{ni,nl}

∫ ∞

τi+dN ′
liz

f
(

τz

αz

)

dτz

)

dτi

=
1

αi

∫

αi

0
∏

nz∈N −{ni,nl}

(

1−F
(τi +dN ′

liz

αz

))

dτi, (2)

where dN ′

liz = dli − dlz + maxn j∈N ′∪{ni}{di j − dz j}. This is

enough for ni to be the new leader, if N ′ ∈ N −ni , assuming

that N −ni is the family of sets over N − {ni} that have

cardinality equal to ⌈(N − 1)/2⌉. This means that ni has to

be voted by a cluster majority including itself. As follows, the

probability of ni to be the next leader after nl is

pli = Pr
[

⋃

N ′∈N −ni

{ni is at least voted by ni and N
′}
]

. (3)

Finally, there is a low probability that election ends with a

split vote, in which case the new leader is the same with

before, thus pll = 1 − ∑ni∈N −{nl}
pli. Then, the transition

probability matrix is P= [pli : ∀nl ,ni ∈N] and the steady-state

probabilities π is an eigenvector of this matrix with eigenvalue

equal to one.

The response time of the command send to ni, when nl is the

leader, is given by t
rep
il = 2(dil +dl∗),∀ni,nl ∈N . Furthermore,

dl∗ = dlz, where nz is the one with rank equal to ⌈(N−1)/2⌉,

when all nodes are increasingly ordered based on their delay

to nl . Actually, nz is the farthest from nl that has to reply to its

append request in order nl to proceed with the commitment.

The average response times t
rep
i = ∑nl∈N πlt

rep
il , ∀ni ∈N and

trep = ∑ni∈N λit
rep
i are given as before.

Now, lets see how these equations are specified in case of

a bus network with 5 nodes.

C. Bus network with 5 nodes

In this case, N = {n1,n2, . . . ,n5} and N = 5, where ni is be-

fore ni+1 and the delay between them is d, ∀i∈ {1,2, . . . ,4}, as

depicted in Figure 1(b). We assume that the fixed part of elec-

tion timeout is equal to the maximum value that random part

can take (as it happens usually in the Raft implementations),

thus tout
o = 1. Heartbeat timeout is 2maxni,n j∈N {di j} = 8d,

which should be an order of magnitude less than the minimum

of the average election timeouts of all nodes, which is no less

than 1. Based on these, we safely choose d ∈ [0,0.03].
Let’s estimate the probability that n5 is the next leader after

n1. This happens only if n5 is at least voted by its two closest

nodes, N ′ = {n3,n4}. There is no way n5 to be voted by n2

or n1 and not by N ′. From Eq. (3) and Eq. (2), we get

p15 = Pr[{n5 is at least voted by n5 and N
′}] =

=
1

α5

∫

α5

0

(

1−F
(

τ5 +4d

α2

))(

1−F
(

τ5 +4d

α3

))

(

1−F
(

τ5 +2d

α4

))

dτ5,

since dN ′

152 = 4d, dN ′

153 = 4d and dN ′

154 = 2d (which are also

confirmed in Figure 1(b)). All transition probabilities can

be estimated using the same formula, while the leadership

probabilities are given as an eigenvector of the transition

probability matrix P. According to our model, for d ∈ [0,0.03]
and α3 = 1, leadership is equally shared if α2 =α4 ≃ 1−3.06d

and α1 = α5 ≃ 1−10.89d. In Section V, we confirm experi-

mentally that leadership is shared equally under these ranges.

V. TESTBED EXPERIMENTATION

For the purpose of validating our theoretical results, we

proceed with extended experimentation using 3 or 5 nodes

of our NITOS testbed [13]. We use etcd [14] for building

a distributed key-value data store over the NITOS nodes,

exploiting the Raft consensus algorithm. More specifically, we

use an example usage of etcd’s Raft library, called raftexample,

provided as part of the same project.

For etcd’s Raft implementation, the time is slotted and the

timeouts are measured as integer number of slots. By default,

the slot is 100 milliseconds. The election timeout is the sum

of a fixed period equal to 10 slots and a random interval

between 0 and 9 slots. At the start of each slot, if node has

received a heartbeat request, its timeout is zeroed. Otherwise,

if timeout has expired, node transits to candidate. Due to

the non precisely synchronized clocks of the nodes, at each

follower, the duration between the moment it received the last

heartbeat from leader and the moment that its next slot starts is

random and less or equal to 1 slot. Thus, the election timeout

at each node will be between 10 and 20 slots or between 1

and 2 seconds. Mapping 1 second to the upper limit 1 of tout
i ,

then tout
o = 1 too.

p

π
1
 =

 π
3

π
2

p
1
1
 =

 p
5
5

p
1
2
 =

 p
5
4

p
1
3
 =

 p
5
3

p
1
4
 =

 p
5
2

p
1
5
 =

 p
5
1

p
2
1
 =

 p
4
5

p
2
2
 =

 p
4
4

p
2
3
 =

 p
4
3

p
2
4
 =

 p
4
2

p
2
5
 =

 p
4
1

p
3
1
 =

 p
3
5

p
3
2
 =

 p
3
4

p
3
3

π
1
 =

 π
5

π
2
 =

 π
4

π
3

0

10

20

30

40

50
theory
experiment

4
3
.2

5
4
3
.2

2

3
1
.9

0
3
1
.8

9

3
6
.2

1
3
6
.2

1

 0
.4

8
 0

.4
8

2
9
.6

3
2
4
.4

1

2
9
.2

7 3
1
.7

3

2
3
.0

0
2
4
.7

6

1
7
.6

2
1
8
.6

2

2
4
.7

6
2
4
.7

4

 0
.7

2
 0

.8
0

3
0
.9

3
3
2
.0

6

2
4
.6

5
2
3
.4

1

1
8
.9

3
1
8
.9

9 2
1
.7

9
2
1
.1

2

2
7
.9

7
2
8
.6

8

 0
.4

7
 0

.4
0

1
7
.3

8
1
7
.4

0 2
0
.9

8
2
0
.4

7 2
3
.2

7
2
4
.2

6

3
 n

o
d
es

5
 n

o
d
es

(a) Equal ranges of election timeouts.

p

π
1
 =

 π
3

π
2

p
1
1
 =

 p
5
5

p
1
2
 =

 p
5
4

p
1
3
 =

 p
5
3

p
1
4
 =

 p
5
2

p
1
5
 =

 p
5
1

p
2
1
 =

 p
4
5

p
2
2
 =

 p
4
4

p
2
3
 =

 p
4
3

p
2
4
 =

 p
4
2

p
2
5
 =

 p
4
1

p
3
1
 =

 p
3
5

p
3
2
 =

 p
3
4

p
3
3

π
1
 =

 π
5

π
2
 =

 π
4

π
3

0

10

20

30

40

50
theory
experiment

3
3
.3

3
3
3
.3

3

3
3
.3

3
3
3
.3

4

 0
.5

9
 0

.5
0

2
9
.1

0
2
3
.8

9

2
5
.8

0 2
8
.2

4

2
1
.9

9
2
3
.4

5

2
2
.5

2
2
3
.9

3

3
0
.2

2
3
0
.1

8

 1
.0

6
 1

.1
2

2
5
.3

0
2
6
.3

7

2
1
.7

2
2
0
.5

5

2
1
.7

0
2
1
.7

8 2
5
.0

6
2
4
.5

5

2
4
.5

9
2
5
.3

3

 0
.6

9
 0

.2
5

2
0
.0

1
2
0
.1

3

1
9
.7

6
1
9
.1

2

2
0
.4

6
2
1
.5

1

3
 n

o
d
es

5
 n

o
d
es

(b) Equal leadership probabilities.

Fig. 2. Probabilities P and π for the bus network with 3 and 5 nodes, when d = 0.035 and d = 0.025 respectively. The empty and filled bars correspond to
the theoretically and experimentally estimated values respectively.

In order to emulate the instant failures, we disable each

leader to send more than one heartbeat request at each term.

In this way, followers assume that leader is fallen after the first

heartbeat and leader is back again to vote for the triggered

election. We repeat 20000 instant failures and elections in

order to estimate the transition and leadership probabilities,

by tracking the log files and measuring how many times each

node has been leader and which node was the predecessor.

The plots of Figure 2 show the probabilities for the bus

networks of Figure 1. For the network with 3 nodes, we

assume that the delay between two adjacent nodes is 35

milliseconds (d = 0.035). We highlight that heartbeat timeout

is almost equal to 2d13 = 4d = 0.14, which is a magnitude

of order less than the average election timeout 1.5. The

experimentally estimated p is the average between the mea-

sured p13 and p31. The same holds for π1 = π3, where the

estimated value is the average between the two measured

ones. We also mention that pii = 0 and p21, p23 ≃ 0.5, as

we expect from our theoretical analysis. Both plots confirm

that our theoretical analysis (empty bars) gives precisely the

experimentally estimated probabilities (filled bars). The left

bars of Figure 2(a) show the unequal leadership probabilities,

as result of the equal ranges of the election timeouts (α2 = α),

while the corresponding bars of Figure 2(b) show the opposite.

The right bars of Figure 2(a) show the same probabilities for

equal ranges of the election timeouts at the bus network with 5

nodes, when d = 0.025. The heartbeat timeout is almost equal

to 2d15 = 8d = 0.2 and a magnitude of order less than the

average election timeout. We group again our experimentation

results by presenting the average values between e.g. p15 and

p51 or π1 and π5, due to the network symmetry. Figure 2(b)

shows the corresponding probabilities for election timeouts

limited by α3 = 1, α2 = α4 = 1 − 3.06d = 0.92 and α1 =
α5 = 1− 10.89d = 0.73 (given at the end of Section IV-C).

The experimentation results are very close to the theoretical

predictions (maximum difference is less than 5% for the

theoretically and experimentally estimated values of p12).

VI. CONCLUSIONS & FUTURE WORK

In this paper, we model the leadership probabilities in a

Raft based cluster of SDN controllers, which is operated over

a network. This model can be used for adjusting the ranges

of the election timeouts of the controllers, in order to change

appropriately the leadership probabilities. This can be done

for minimizing the average response time for a command sent

to each controller. Our future work includes the study of the

same model with use of the Raft implementation of ONOS or

ODL. We will also model scenarios with non instant failures,

where failed leaders do not vote for the new leader.

ACKNOWLEDGMENT

The research leading to these results has received funding

by the European Horizon 2020 Programme for research,

technological development and demonstration under Grant

Agreement Number 857201 (H2020 5G-VICTORI).

REFERENCES

[1] D. Ongaro and J. Ousterhout. In Search of an Understandable Consensus
Algorithm. In Proc. USENIX ATC, 2014.

[2] H. Howard et al. Raft Refloated: Do We Have Consensus? ACM

SIGOPS, 49(1):12–21, January 2015.
[3] OpenDaylight (ODL). https://www.opendaylight.org/.
[4] Open Network Oper/ing Sys. (ONOS). https://wiki.onosproject.org/.
[5] B. Heller, R. Sherwood, and N. McKeown. The Controller Placement

Problem. In Proc. HotSDN, 2012.
[6] K. Choumas et al. SDN Controller Placement and Switch Assignment

for Low Power IoT. Electronics, 9(2), 2020.
[7] M. Karatisoglou et al. Controller Placement for Minimum Control

Traffic in OpenDaylight Clustering. In Proc. 5GWF, 2019.
[8] E. Sakic, F. Sardis, J. W. Guck, and W. Kellerer. Towards adaptive state

consistency in distributed SDN control plane. In Proc. ICC, 2017.
[9] T. Zhang, A. Bianco, and P. Giaccone. The Role of Inter-Controller

Traffic in SDN Controllers Placement. In Proc. IEEE NFV-SDN, 2016.
[10] Y. Zhang et al. When Raft Meets SDN: How to Elect a Leader and

Reach Consensus in an Unruly Network. In Proc. APNet, 2017.
[11] E. Sakic and W. Kellerer. Response Time and Availability Study of

RAFT Consensus in Distributed SDN Control Plane. IEEE Trans. on

Network and Service Management, 15(1):304–318, 2018.
[12] R. Hanmer, L. Jagadeesan, V. Mendiratta, and H. Zhang. Friend or

Foe: Strong Consistency vs. Overload in High-Availability Distributed
Systems and SDN. In Proc. ISSREW, 2018.

[13] NITOS testbed. https://nitlab.inf.uth.gr/NITlab/nitos.
[14] etcd: A distributed key-value store. https://etcd.io/.

