
1

Virtual 802.11 Wireless Networks with Guaranteed

Throughout Sharing
Kostas Katsalis∗, Kostas Choumas∗, Thanasis Korakis∗, Leandros Tassiulas†

∗University of Thessaly, Greece
†Yale University, USA

kkatsalis, kohoumas, korakis@uth.gr, leandros.tassiulas@yale.edu

Abstract—In this work, we present how programmable data-
plane technology (software routers) offers an easy-to-apply mech-
anism to create virtual wireless networks and support buffering
and scheduling decisions. Furthermore, we present a feedback-
based buffering mechanism that is able to provide throughput
ratio guarantees per virtual network, without requiring any mod-
ifications in the 802.11 driver and without relying on statistical
knowledge of the workload per virtual network or knowledge
regarding the channel conditions. We implement the proposed
mechanism in a software router in a 802.11 Access Point and we
evaluate its performance in a wireless testbed environment. The
methodology and the mechanics developed are generic and with
some modifications can be applied to differentiating services for
other types of guarantees like delay.

Keywords—Virtual Wireless Networks, Stochastic Control,
Queueing theory, Mobile Cloud Networking.

I. INTRODUCTION

In order to face physical infrastructure limitations, resource
sharing and virtualization technology can be used to facilitate
the creation of virtual wireless infrastructures. Depending on
the virtualization approach, technology already exists to create
802.11 virtual wireless networks. Nevertheless, due to the
varying channel conditions, the unpredictable behavior of the
wireless medium and limitations in the access technology, it
is very difficult to provide real time guarantees by means of
delay, throughput etc., while at the same time differentiate
services effectively between competing virtual networks.

In order to build 802.11 virtual wireless networks, spatial or
temporal sharing of the wireless channel, using beamforming
techniques in 802.11n MIMO systems [1] or tuning techniques
of contention window size parameters and transmission oppor-
tunity limits in 802.11e [2], have been proposed. In contrast,
in this work we examine how software routers, like the Click
Modular Router [3], can be utilized in native 802.11 Access
Points (APs), in order to offer group-based scheduling, where
groups of users belong to different virtual networks (VNets).
The operations are performed in a layer between the MAC and
IP, while the APs operate in infrastructure mode. The software
router will be used to implement a stochastic buffering mech-
anism that we propose and that is able to provide guaranteed
service differentiation between the aggregated virtual network
(VNet) flows. The differentiation objective is related to specific
ratios of transmitted bytes per VNet flow. The problem we are
investigating is the following: “guarantee specific percentage

of transmitted bytes to every VNet flow, using a policy that is
work conserving (never go idle in case of available load) and
should not rely on assumptions or predictions regarding the
arrival statistics, the packet sizes and the channel conditions”.

Our contributions are the following. We present how soft-
ware routers can be used in native 802.11 APs, without
requiring any modifications on the driver and the client side in
order to handle VNet flows. In addition we present a buffering
policy that guarantees transmitted bytes ratios without relying
on complex scheduling policies or admission control or/and
differential dropping [4]. The proposed mechanism can be
extended to a large number of VNets, without requiring
one queue per VNet like in classic scheduling schemes. We
evaluate our approach in the NITOS [5] wireless testbed,
under real interfering conditions by neighbor transceivers.
We note that the proposed solution applies to the downlink,
which we target due to its importance in cloud services, like
video broadcasting. The proposed mechanism can be applied
in conjunction with other QoS mechanisms, e.g. 802.11e, to
provide QoS guarantees besides service differentiation, while
a combination of additional control mechanisms that take into
consideration the channel conditions can be used to provide
throughput optimality [6]. Nevertheless, the primary aspect
we focus on this work, is throughput-bytes ratio guarantees
between the wireless VNets. The total throughput can be
increased if techniques like rate adaptation are used.

The rest of the paper is organized as follows: in Section II
we present the motivation for this work, the system model and
the problem under consideration; in Section III we describe the
differentiation scheme; in Section IV we evaluate the proposed
solution in a wireless test-bed environment, while we conclude
the paper and present our future plans, in Section V.

II. MOTIVATION & PROBLEM STATEMENT

Converged wireless heterogeneous networks with macro,
pico base stations, femtocells and Wi-Fi APs, aim to cover
the communication needs of billions of subscribers, towards
the 5G vision. Projects like CONTENT [7] focus on such
converged virtual wireless networks, that explore multi-domain
virtualization. In end-to-end architectures, the goal of multi-
domain virtualization is to build end-to-end paths from the
access network up to the virtualized data center and allow
for seamless orchestrated on-demand service provisioning. The
motivation for this work comes from such environments, where
the end-to-end virtual path terminates not in the backhaul

ethernet network, but to the virtualized wireless 802.11 APs.
By enhancing virtualized APs with service differentiation
capabilities, an 802.11 network provider can share virtualized
resources to the various stakeholders, like Mobile Optical
Virtual Network Operators (MOVNOs) (Fig.1).

In order to support such an enhancement, we need a virtu-
alization approach in order to virtualize the APs and policies
that are able to differentiate services, while at the same time
limit the disturbances that derive from the stochastics of the
wireless channel. In this study we adopt the software router
solution in order to satisfy the first requirement and closed-
loop (feedback-based) control to satisfy the second, where the
differentiation objective is related to specific transmitted bytes
ratios per VNet. We analyze both of them in the following
subsections, making the necessary references to the related
work. We begin by stating the problem studied in this work.

A. System Model & Problem statement

A single 802.11 Access Point, is equipped with a single
802.11 wireless interface and serves a number of virtual
network flows V = {1, 2, · · · , V }. Let Ui = {1, 2, · · · , Ui}
denote the set of users that are associated with each VNet
i. The aggregated traffic from all the users in some VNet
defines the corresponding VNet flow. With respect to practical
considerations, we assume that the total number of users does
not violate the limits that are set by the AP administrator. The
packet arrivals for every virtual flow have a general distribu-
tion with unknown mean. Furthermore, we assume operation
in a completely stochastic environment where interference,
collisions and congestions are difficult to model and so the
corresponding parameters that could affect our model are
considered unknown.

Let Bj
i (t) denote the number of bytes transmitted to user j

associated with VNet i. Then, the aggregated downlink traffic

Bi(t) of VNet i up to time t equals Bi(t) =
|Ui|∑

j=1

Bj
i (t). We

also define B(t) =
|V|∑

i=1

Bi(t) as the total bytes transmitted by

all users and by all VNets until time t and weight wi as the
proportion of B(t) we wish VNet i to receive in the long run,

such that
|V|∑

i

wi = 1. The problem under examination is to find

a policy that in the long run (sufficiently large t) guarantees
that every VNet i will have wi · B(t) bytes transmitted. For
example, in the case of two VNets and a single AP, if 10 GB
were transmitted until time t, w1 = 0.2 and w2 = 0.8, the
policy guarantees that 2 GB have been transmitted for VNet 1
clients and 8 GB for clients of VNet 2, without being affected
by the channel conditions or arrival rate variations.

B. Wireless Virtualization approach

In principle, resource virtualization in 802.11 wireless net-
works can be made in both the physical and MAC layers.
In the physical layer, radio resources can be shared and
thus virtualized in different ways such as time, space and
frequency [8]. Spatial or temporal sharing of the wireless

MOVNO 1 MOVNO 2

Virtual

Networks

Wireless Access Networks Optical Metro Networks Data Centers

Fig. 1: Virtualized end-to-end Network Architecture

channel using beamforming techniques, has been proposed in
802.11n MIMO systems [1] and tuning techniques of 802.11e
in [2]. Custom enqueueing actions that take into consideration
the station identification or the traffic type using 802.11e
are presented in [9]. Nevertheless, these schemes require
enhanced driver capabilities and cannot be applied in native
wireless drivers. In the MAC layer, Multi-SSID virtualization
is investigated in works like [10] and [11] to group users
by assigning them to different Virtual APs (VAPs), where
each VAP uses different SSID. By mapping each VNet to
a different VAP, different handling per VNet is feasible (eg.
authentication, encryption and transmission rate etc). Although
this mechanism is widely used, it is prone to increased
channel utilization, due to overhead caused by beacon frames
that advertise the multiple SSIDs. In addition, regarding the
differentiation objective we study, the previous approaches
do not take into the account the dynamics of the wireless
channel. This means that the actual throughput achieved per
VNet, can significantly vary from the actual goal. To face these
limitations, we consider a feedback based approach that adapts
the system according to runtime performance. We explain this
in more detail, in the following. Similarly to [11], where the
SplitAP architecture is proposed, we utilize software routers
[3] to program forwarding operations. However, we focus on
operations between MAC and IP layers, our focus stays on the
downlink and our objective is not to allocate fairly the airtime
usage to every VNet, but to provide specific throughput ratios
by means of transmitted bytes.

In this work, we distinguish the traffic between different
VNets, based on the VLAN identification. In a native 802.11
AP all the VNet flows must enter, prior to transmission, the
single FIFO queue implemented in the driver and so be served
in a “First come First served” fashion. A software router,
like the Click router [3], can be used to implement user-
defined queueing structures and sophisticated buffering and
scheduling policies, as shown in Fig.2. The Click router is
extremely extensible and can be used to perform actions like
packet scheduling, traffic shaping, filtering, packet dropping
and header rewriting. In the following, we answer why a dy-
namic control mechanism is required in order to give accurate
percentages of transmitted bytes to every VNet flow and we
describe the proposed differentiation mechanism.

C. The need for dynamic control

A static approach to handle the VNet flows, would suggest
to schedule each flow according to the desired weight in a
weighted Round Robin fashion or even probabilistically. In
addition, in the case we have knowledge of the arrival process

2

Flow 1

Flow 2

802.11 Driver

M
A

C

P
ri
o

ri
ty

 C
S

M
A

/C
A

Software router

(User or Kernel mode)

Feedback

Controller

E
n

q
u

e
u

e
in

g

D
e

c
is

io
n

Bucket Queue

Driver

Queue

VNet Flows

1

2

K

...
...

... L

Round

Robin

L

Native 802.11 Access Point

Flow V

VNet V

subscribers

VNet 2

subscribers

VNet 1

subscribers

Fig. 2: Virtualized end-to-end Network Architecture

of every VNet, the channel conditions and the transmissions
rate of the AP, a model could be constructed to find the
appropriate scheduling weights. Token principles and Weighted
Fair Queueing (WFQ) [12] have been used extensively, to
provide throughput guarantees through scheduling; in [13] rate
allocations across wireless and wired devices in a weighted
fair manner are presented; and to achieve time fairness, the
packet release rate from the network layer to MAC layer is
adjusted based on the queue length in [14]. Nevertheless, this
is not the case if we have no statistical knowledge of the
workload per VNet, the channel and interfering conditions and
statistical knowledge about packet drops. The reason is that
without any modification of the Distributed Control Function
(DCF) mode of the 802.11, the AP and the users that are
associated with it, are competing for the medium between them
and between neighbor APs that operate in the same channel.
If the scheduler assigns weight statically to some VNet, but
as opposed to the users of other VNets, its customers face
increased collisions and packet drops or/and the distribution of
its workload significantly varies, then the requested percentage
cannot be achieved.

Our approach in this work is to use closed-loop stochastic
control in order to achieve the differentiation objective. The
reason is that we want our system to respond in real time in the
varying channel conditions and interference. In addition, we
don’t want to reside on knowledge regarding the arrival or the
service process. The proposed control mechanism is aiming to
minimize at each control instant, the runtime input error of the
difference between the transmitted bytes measurements and the
goal percentages. The control decision must be carefully taken,
since giving increased priority to some VNet, will clearly affect
(decrease) the performance of the other VNets.

III. DIFFERENTIATION SCHEME

The solution proposed in this work, is similar in rationale to
the approach developed in [15], where a stochastic buffering
mechanism was used to provide service differentiation between
a number of competing customer classes in a data center. In
this work, we show how this policy can be extended and be
used in a completely different environment, with all the restric-
tions the wireless medium imposes. Also, we stress it under a
different objective, namely guaranteed service differentiation,
by means of transmitted bytes shares. In contrast to works
like [4], the proposed buffering policy, requires no admission
control to perform the necessary traffic shaping. The proposed
scheme is similar to Stochastic Fair Queueing [16], in the sense

that different number of queues are required per active flow,
multiple sessions might end up in the same queue and queues
are serviced in a Round Robin fashion.

• The proposed queueing structure
A software router is used to implement the following
queueing structure in the AP, without affecting the driver.
There is a number of queues accessible by all the VNets,
where an artificial bound L is set to their size. In
addition, we add one more queue, that all the VNets can
also access, which we refer as the bucket queue and that
we allow to grow to infinity (practically the excess load
will be dropped if it violates the system limitations). Is
up to the policy to decide in which queue to store an
incoming packet; in a limited size queue or the bucket
queue. All queues are served in Round Robin fashion
and the first packet of every queue is forwarded to the
single FIFO queue implementation of the driver. The
queueing structure is depicted in Fig.2.

• Bucket queue with Limited Size Queues (BLSQ)
For every incoming packet of VNet flow i that must be
enqueued: If the number of transmitted bytes for VNet
i are less than wi · B(t) (it is below its goal) then the
policy uses Join the Shortest Queue (JSQ) [17], between
the limited size queues that have not reached the queue
limit; in all other cases the packet is forwarded to the
bucket queue. The algorithm is outlined in Algorithm 1.

The intuition behind this algorithm is the following. What
will occur after the packet enters the driver’s FIFO queue, is
based on factors like interference, collisions and congestions
that practically are difficult to model. In contrast to complex
scheduler implementations (that require changing the weights
of a weighted round robin scheduler or changing the probabil-
ities of a probabilistic scheduler, or apply admission control
and drop such packets (e.g [18], [4]), by using the proposed
scheme with a simple Round Robin scheduler, the required
ratio is preserved per flow. Although, this comes with the
effect of packet re-ordering, that is not an issue in practical
deployments, since (up to some point) it can taken care by
higher layer protocols.

The ratio is preserved by indirectly speeding up the VNet
clients in the limited size queues and by holding back in the
bucket queue the VNet flows, which packets contribute in a
ratio higher than the one defined in the SLA. This control
decision is agnostic to the number of users per VNet, it only
requires knowledge of the aggregated traffic served per VNet.
We also point that although the decision is made per packet,
this decision is agnostic to the packet size distribution, since it
only requires knowledge of the bytes transmitted. If a packet
arrives from a “suffering” VNet, we enqueue it in the limited
size queues, independently of its size.

From a theoretical perspective, we refer to [15] for a
queueing analysis of the traffic splitting between the bucket
queue and the limited size queues and how stability condi-
tions are related to the feasibility region. The most important
features of the algorithm are that no statistical knowledge is
required regarding workload dynamics, channel conditions or
interference; the operation of the MAC layer and the driver are
left unattached and no modifications are required on the client

3

Algorithm 1 BLSQ - Algorithm Description

wi : transmitted bytes percentage goal for VNet i
t : enqueueing instant
L : a queue limit
Xj(t) : the queue size of queue j at time t (j not the bucket)
Update Bi(t) (the measured throughput percentage)
if Bi(t) < wi ·B(t), ∃j : Xj(t) ≤ L then

JSQ between the limited size queues
else

enqueue in the bucket queue
end if

side. Furthermore, the number of queues can be sufficiently
smaller than the number of VNets, while its operation is made
with a plain Round Robin scheduler.

IV. BENCHMARKING IN A WIRELESS

TESTBED ENVIRONMENT

A large set of experiments were conducted in order to
present the algorithm’s efficiency and demonstrate how sys-
tem and statistical parameters affect the algorithm perfor-
mance. Due to page size limitations we present an indicative
set of experiments using a single AP; extensions for dis-
tributed/centralized operation in a clustered environment are
left for future work.

A prototype solution was implemented in a Commell node
in the NITOS outdoor wireless testbed [5]. The outdoor NITOS
wireless testbed (50 wireless nodes) was selected to demon-
strate the algorithms efficiency in realistic conditions, since the
testbed operates in an urban area and additionally, multiple ex-
periments run concurrently from other experimenters. Thus, all
our experiments faced uncontrollable collisions and interfering
conditions from neighbor APs and users. As we show in the
following, interference was also created on purpose to further
stress the algorithm.

The Commell node selected is equipped with Core 2 Duo
2.26 GHz CPU, 2G DDR3 RAM, two Gigabit network in-
terfaces, Atheros 802.11a/b/g/n wireless interfaces, multi-
band 5dbi and operates both on 2.4Ghz and 5Ghz antennas.
The setup we present in the following, uses a single interface
(802.11a in the 5Ghz band), while the queueing structure as
long as the buffering control mechanism were implemented
using the Click Modular Router [3]. The BLSQ enabled AP
was used to send traffic to users that were logically associated
with different VNets, using VLANs. The experimentation
model is depicted in Fig.3.

Experiments Parameterization: In every experiment, specific
percentage goals were set for every VNet. The arrival process
was created with iperf (UDP traffic) and the measurements
were collected using the OML library. The payload was set
1470 bytes for every packet and the AP was tuned to transmit
in a physical rate of 12 Mbps (similar results were obtained
when auto-rate adaptation was used). In all the experiments we
wanted to stress the BLSQ algorithm in heavy load conditions,
so the arrival rate for every user was set equal to 7 Mbps.

Flow 1

Flow 2

20%

VNet Flows

Flow 3

30%

50%

VNet 3

VNet 2

VNet 1

BLSQ

Enabled AP

Interfering

AP

 Transmitted

Bytes

per VNet

goals

Fig. 3: Experimentation model

In order to investigate how the system and statistical pa-
rameters affect the algorithm performance, we used a basic
scenario and each time we varied a parameter to investigate
its effects on performance. The basic scenario is the following.

Basic scenario parameters: We used a single AP and we
defined 3 VNets; VNet 1 (1 user), VNet 2 (2 users) and VNet
3 (1 user). The VNet goal vector was set (20%, 30%, 50%),
while we made statistics updates whenever a packet was send
successfully (ACK received). In the software router we used 3
queues in total (the bucket queue plus 2 limited size queues).
In all the experiments presented, the bucket queue size was
set to the maximum available (1,000,000 packets) and the
limit for the limited size queues L was set equal to 100. This
number was selected after experiments that presented good
performance, but actually the rule of thumb is to select a
number that will keep the limited size queues short, in order
to be able to speed up the VNet we want.

A. Experimental results

1) Basic scenario - Fig.4(a): This is the basic sce-
nario experiment, where the VNet goal vector was set
(20%, 30%, 50%). Fig.4(a) is used to demonstrate that the
algorithm provides the requested ratio of transmitted bytes
per virtual flow. It is interesting to note that VNet 2 serves
two users. Since, the mechanism only checks the total number
of transmitted bytes per VNet, in order to adapt its control
decision, each individual user will receive a percentage propor-
tional of the load transmitted to him, to the load transmitted to
all the other users in the same VNet. The number of users per
VNet and their transmitting rates, plays no role in convergence
as long as their aggregated rate can satisfy a feasible goal. As
we present in the following, a goal vector like 98%,1%,1%
may not be feasible.

2) Varying the Arrival Rate - Fig.4(b): In Fig.4(b) the total

deviation from the goal is depicted (
|V|∑

i=1

|Bi(t)
B(t) − wi|). We

remind B(t) is the total transmitted bytes and Bi(t) is the
ratio VNet i achieved until time t. In this experiment we used
the basic configuration, where we varied the arrival rate of the
traffic destined to the user of VNet 1, from 0.5 to 10. As we
can see in Fig.4(b) the algorithm operation is insensitive to
arrival rates variations, as long as the goal is feasible. When
the sending rate to user/VNet 1 is very low (eg. 0.5 or 1 Mbps),
the goal of 20% is infeasible. Nevertheless, in all other cases
the goals are achieved. Similarly, if packet sizes significantly
vary, because of the feedback control, the algorithm operation
guarantees the requested transmitted bytes ratio.

4

Tra
ns

. B
yte

s R
ati

o (
%)

0
10
20
30
40
50
60
70
80

time (sec)
50 100 150 200 250

VNet 1
VNet 2
VNet 3

(a) Example scenario

To
tal

 De
via

tio
n

0

20

40

60

80

time (sec)
50 100 150 200 250

10 Mbps
7 Mbps
4 Mbps
1 Mbps
0.5 Mbps

 VNet 1 cannot reach goal

(b) Arrival Rate effect

To
tal

 De
via

tio
n

0

20

40

60

80

time (sec)
50 100 150 200 250

5 VNets
3 VNets

(c) Number of VNets effect

To
tal

 De
via

tio
n

0

20

40

60

80

time (sec)
50 100 150 200 250

2 queues
3 queues
4 queues
5 queues

(d) Number of queues effect

Tra
ns

. B
yte

s R
ati

o (
%)

0
10
20
30
40
50
60
70
80

time (sec)
50 100 150 200 250

VNet 1
VNet 2
VNet 3

(e) Interference effect

To
tal

 De
via

tio
n

0
10
20
30
40
50
60
70
80

time (sec)
50 100 150 200 250

10
100
500
1000

sampling period (skipped packets)

(f) Sampling effect

Fig. 4: Algorithm performance in different scenarios

3) Varying the number of VNets - Fig.4(c): In this setup we
varied the number of VNets from 3 to 5 (one user per VNet),
where the goal was to load balance the traffic between the
VNets. The number of queues in both cases was set equal to
2, where again we present the total absolute deviation. One of
the main features of the algorithm is that is able to differentiate,
using a number of queues significantly less than the number
of VNets. As we can see in this example, we can perform
load balancing between the VNets using only 2 queues (plus
the bucket queue). We also stressed the algorithm in different
setups with multiple VNets with different goals defined and
less queues. Again we report that the feedback mechanics of
the algorithm took into the account the dynamics of the system
and adapted transmitting rates accordingly.

4) Varying the number of Queues - Fig.4(d): As already dis-
cussed, the only requirement for the policy to work is to have a
feasible goal defined. For e.g. a goal vector (98%−1%−1%)
may not be feasible for the policy; this depends both on the
queue structure and the system dynamics. One simple way to
increase the feasibility space (succeed more disperse goals),
is to increase the number of limited size queues. The bucket
queue policy, gives more opportunities to adjust the “suffering”
VNet percentage to a higher value, when increasing the number
of the limited size queues. In Fig.4(d) the SLA throughput goal
vector was set equal to {15%, 15%, 70%} and we varied the
number of the limited queues. As we can see, for a small
number of queues, the policy fails to meet the objective,
nevertheless as the number of limited size queues increases
the total deviation decreases. By increasing the number of

the limited size queues, we give more opportunities to the
“suffering” VNets to increase their percentages in each round.

5) Increasing interference - Fig.4(e): Increasing the number
of users, results in increased congestions, increased interfer-
ence and increased number of collisions. In such environment,
in the same time window more retransmissions (MAC orig-
inating) take place. We observed these phenomena, by using
the same configuration as the basic setup with the three VNets,
while adding an additional interfere AP on the same frequency
channel, transmitting to a single interfering node in the maxi-
mum rate (using Rate adaptation and downlink sending rate
50 Mbps). As we can see the feedback mechanics of the
algorithm takes this into the account and adapts transmitting
rates accordingly. In Fig.4(e) we see that increased interference
results in “slightly” slower convergence, but does not affect
convergence itself. This is very important since interference
may not have a similar, uniform effect in all users/VNets
transmissions. The dynamic feedback-based operation of the
algorithm is the one that stabilizes the percentages achieved
by each VNet around the desired value.

6) Increasing the statistics update period - Fig.4(f): Imple-
mentability enhancements on the proposed algorithm are made
based on work presented in [18]. In order to avoid updating
the statistics based on all the transmitted packets information,
using a sampling technique, we updated the statistics according
to a sampled ACKed packet we select periodically, Fig.4(f)
presents the effects of increasing the sampling period (in
number of skipped packets). This directly correlates with how
updated is the information that is used by the mechanism, the

5

De
lay

 (s
ec

)

0

10

20

30

40

50

time (sec)
20 30 40 50

VNet 1(BLSQ)
VNet 3(BLSQ)
VNet 1 (single queue)
VNet 3 (single queue)

Fig. 5: Delay

time instants a buffering decision is made. As we can see, and
is also expected intuitively, there exists a trade-off between the
signaling overhead required and the convergence speed.

7) Delay performance - Fig.5: In Fig.5 we use the basic
configuration to present the delay performance of every VNet,
when the BLSQ is used and we compare it with the case
where all the requests from all VNets, are entering directly
the single FIFO queue of the driver. As expected different
VNets experience different delay. Note that the delay in Fig.5
is increasing staggeringly, since total arrival rate (28Mbps)
over-exceeds the sending rate (∼ 12Mbps). Nevertheless, these
values are not representative for a system that operates in
stability region. Using BLSQ the delay for VNet 1 (requesting
20% throughput) is increased, in contrast with the native single
queue implementation, while the delay for VNet 3 (requesting
50% throughput) is reduced. The reason is that most of the
packets from VNet 1 are send from the bucket queue to the
driver queue, while traffic to VNet 3 is mostly using the limited
size queues, thus on average the delay will be better.

V. CONCLUSIONS & FUTURE WORK

In this work, we presented how software routers offer an
easy-to-apply mechanism to build virtual wireless networks.
In addition, we presented a buffering mechanism with queue
size limitations, that can be used to provide exact throughput
percentage guarantees in 802.11 virtual wireless networks.
In the proposed scheme less queues are required than the
number of virtual networks, while the system operates with
a Round Robin scheduler. Future plans include study of the
algorithm behavior in an environment with multiple APs and
its performance under distributed and centralized control. The
proposed scheme is not able to guarantee throughput optimality
or QoS, so extensions are planned on these directions also.
Delay bounds investigation and better performance regarding
jitter will also be part of our future research. A factor that
affects jitter and the order of delivered packets is the queue
limit we set to the limited size queues. In this direction, we
plan to enhance the BLSQ algorithm with a packet dropping
scheme and congestion marking schemes, while also schemes
that can safely drop over-delayed packets.

VI. ACKNOWLEDGEMENTS

The work of Kostas Katsalis and Thanasis Korakis has
been funded by the EU Project 318514 “Convergence of
wireless Optical Network and IT rEsourcesiN support of cloud
services” (CONTENT). The work of Kostas Choumas has
been funded from the EU FP7 Project, under grant agreement
285969 (CODELANCE).

REFERENCES

[1] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong,
“Argos: Practical many-antenna base stations,” in Proceedings of ACM

MobiCom, 2012.

[2] K. Guo, S. Sanadhya, and T. Woo, “ViFi: virtualizing WLAN using
commodity hardware,” in Proceedings of ACM MobiArch, 2014.

[3] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, 2000.

[4] F. Lu, G. Voelker, and A. Snoeren, “Weighted fair queuing with
differential dropping,” in Proceedings of IEEE INFOCOM, 2012.

[5] K. Pechlivanidou, K. Katsalis, I. Igoumenos, D. Katsaros, T. Korakis,
and L. Tassiulas, “NITOS testbed: A cloud based wireless experimen-
tation facility,” in Proceedings of ITC, 2014.

[6] K. Choumas, T. Korakis, I. Koutsopoulos, and L. Tassiulas, “Imple-
mentation and End-to-end Throughput Evaluation of an IEEE 802.11
Compliant Version of the Enhanced-Backpressure Algorithm,” in Pro-

ceedings of TRIDENTCOM, 2012.

[7] K. Katsalis et al., “CONTENT Project: Considerations towards a Cloud-
based Internetworking Paradigm,” in Proceedings of IEEE SDN4FNS,
2013.

[8] G. Smith, A. Chaturvedi, A. Mishra, and S. Banerjee, “Wireless
virtualization on commodity 802.11 hardware,” in Proceedings of ACM

WiNTECH, 2007.

[9] K. Choumas, T. Korakis, and L. Tassiulas, “New prioritization schemes
for QoS provisioning in 802.11 wireless networks,” in Proceedings of

IEEE LANMAN, 2008.

[10] G. Aljabari and E. Eren, “Virtualization of wireless LAN infrastruc-
tures,” in Proceedings of IEEE IDAACS, 2011.

[11] G. Bhanage, D. Vete, I. Seskar, and D. Raychaudhuri, “SplitAP:
Leveraging Wireless Network Virtualization for Flexible Sharing of
WLANs,” in Proceedings of IEEE GLOBECOM, 2010.

[12] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a
Fair Queueing Algorithm,” in Proceedings of ACM SIGCOMM, 1989.

[13] C. Gkantsidis, T. Karagiannis, P. Key, B. Radunovic, E. Raftopoulos,
and D. Manjunath, “Traffic Management and Resource Allocation in
Small Wired/Wireless Networks,” in Proceedings of ACM CoNEXT,
2009.

[14] M. Zhang, S. Chen, and Y. Jian, “MAC-layer Time Fairness across
Multiple Wireless LANs,” in Proceedings of IEEE INFOCOM, 2010.

[15] K. Katsalis, G. S. Paschos, L. Tassiulas, and Y. Viniotis, “Service
differentiation in multitier data centers,” in Proceedings of IEEE ICC,
2013.

[16] P. McKenney, “Stochastic fairness queueing,” in Proceedings of IEEE

INFOCOM, 1990.

[17] G. Foschini and J. Salz, “A Basic Dynamic Routing Problem and
Diffusion,” Communications, IEEE Transactions on, vol. 26, no. 3, pp.
320–327, 1978.

[18] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate
Fairness Through Differential Dropping,” in Proceedings of ACM SIG-

COMM, 2003.

6

