
Multirate Multicast: Optimal Algorithms and
Implementation

Georgios S. Paschos∗‡, Chih-ping Li∗, Eytan Modiano∗, Kostas Choumas§ and Thanasis Korakis§
∗LIDS, Massachusetts Institute of Technology, Cambridge, MA, USA

§Dept. of ECE, University of Thessaly, Volos, Greece
‡Informatics & Telematics Institute, CERTH, Greece

Abstract—Multirate multicast improves user quality but com-
plicates network optimization. This paper introduces a novel
control scheme to dynamically optimize multirate multicast. We
present MMT, an adaptive policy which combines differential
backlog scheduling and intelligent packet dropping, both based
on local information. MMT is shown to maximize network
throughput by adapting to changing conditions such as channel
quality, network congestion, and device capabilities. Then, we
study the problem of per-receiver network utility maximization.
To maximize sum utility we propose the MMU policy, an extension
of MMT with receiver-end flow control. Under the operation of
both policies backlog sizes are deterministically bounded, which
provides delay guarantees on delivered packets. An important
feature of the proposed scheme is that it does not require
source cooperation or centralized calculations. To illustrate its
practicality, we present a prototype implementation in the NITOS
wireless testbed. Experimental results verify the optimality of the
scheme and its low complexity.

I. INTRODUCTION

The increasing demand for multimedia applications, such as
real-time conferencing, multiview video and video streaming,
pushes data networks to their operational limits and motivates
efficient resource allocation schemes. Multicast is a candidate
method for delivering multimedia streams to multiple users
across a network. To optimize individual user experience,
it is desired to employ multi-rate multicast transmissions
and use layered multimedia coding schemes to adapt users’
perceived quality to allowable data rates, see [1], [2]. Since
different receivers may require different data rates, we study
the problem of per-receiver Network Utility Maximization
(NUM) in multi-rate multicast, where each receiver is assigned
a potentially different utility function.

Controlling multicast streams is challenging; the optimal
network resource allocation and stream rate adaptation de-
pends on the network state, which includes channel quality,
network congestion, user demand and device capabilities.
Current approaches collect network state information at the
source and calculate the achievable stream rate per receiver.
Such a process can be overwhelming for the source, since
a multicast stream may have thousands of receivers. In this
work we develop a solution to per-receiver NUM in multi-
rate multicast without source cooperation.

Our solution combines scheduling with intelligent packet
dropping at intermediate nodes. Packets corresponding to all
stream layers are initially injected into the network without
any calculations. Progressively, some packets are dropped
according to a dropping scheme which bases its decisions

on local information. We show that the original stream is
stripped of unnecessary packets so that each receiver obtains
the exact amount of information that corresponds to maximum
throughput. Moreover, we combine the above mechanism with
receiver-end flow control to produce a scheme that maximizes
utility without source cooperation.

The proposed policies have the following attractive features.
First, they dynamically track the optimal solution without
explicitly exchanging information about time-varying system
parameters such as stream rate, link quality and network
congestion. Second, they are based on neighbor backlog infor-
mation which is found locally. Thus the policies are amenable
to distributed implementation for wireless and heterogeneous
network technologies. Third, they do not require source coop-
eration, i.e. the sources transmit stream packets without cal-
culating the achievable receiver rates–this simplifies multi-rate
multicast for networks with a large number of receivers. Last,
they yield deterministic bounds for the queue backlogs, which
provides delay guarantees and facilitates implementation on
systems with finite buffers. Our contribution is summarized in
the following points:
• We present the Maximum Multicast Throughput (MMT)

policy, which achieves near optimal throughput for multi-
rate multicast. MMT uses backpressure-type scheduling
and threshold-based packet dropping.

• We develop the Maximum Multicast Utility (MMU)
policy, which additionally includes a utility-based flow
controller at the receivers. MMU is shown to solve the
per-receiver NUM problem.

• We propose MMU-W, a heuristic modification for oper-
ation on IEEE 802.11-based wireless devices. We im-
plement MMU-W in a wireless testbed and perform
experiments. The results demonstrate the optimality and
the low complexity of our scheme.

A. Related Work

The problem of NUM has been extensively studied for
the case of unicast sessions [3]. For multicast sessions, [4]
provides a fair-utility offline solution. Optimizing resource
allocation and maximizing network utility by solving offline
optimization problems is less desirable since variability in
the network renders this approach ineffective. Every change
requires re-solving the problem and enforcing new rules. A
preferable alternative is a dynamic policy that achieves the
long-term goals by making adaptive real-time decisions [5].



2

In [6], an approach to dynamic control for multicast sessions
balances the stream across a selection of multicast trees. While
this approach provides maximum throughput, it requires the
arrivals to be feasible, which can only be achieved with proper
flow control. Many existing flow control approaches have the
users estimate their maximally allowable throughput and con-
vey this information to the source, which then creates a virtual
multicast session for each stream layer [7], [8]. Recently, [9]
proposed a dynamic policy that solves the stochastic NUM
problem under the assumption of infinite demand, using the
concept of the shadow backpressure routing. Virtual packets
travel in the reverse direction in order to discover congestion
and help route the actual data packets.

Our approach differs because it is based on local dropping
and it does not require end-to-end signaling. An in-network
flow control approach is proposed in [10], where a credit-
based flow controller is shown to achieve max-min fairness,
i.e. it solves the NUM problem for a specific choice of utility
functions. We generalize in-network flow control for multirate
multicast per-receiver NUM.

II. SYSTEM MODEL

Let G = (V,E) be the graph, serving a set C of multicast
sessions. Session c ∈ C consists of a source node c ∈ V 1

and a set of receivers U (c), and is delivered over a given tree
G(c) = (V (c), E(c)) ⊂ G. We consider a wireline network in
which all links in E can be used simultaneously (we discuss
wireless networks in section V).

Time is slotted and in slot t, A(c)(t) packets arrive at the
source of session c. We assume that A(c)(t) are i.i.d. over time
slots with mean λ(c) and take finite values, i.e. A(c)(t) ≤ Amax.

A. Queueing Structure

Each node maintains one transmission queue for every
outgoing link l and session c, let Q(c)

l (t) denote its backlog at
the beginning of slot t. Define p(l) ∈ E(c) to be the incoming
(parent) link to that node2 and let Lout(c) ⊂ E(c) be the set
of outgoing links of the source node c. Queue Q(c)

l (t) evolves
across slots according to

Q
(c)
l (t+ 1) ≤

[(
Q

(c)
l (t)− µ(c)

l (t)
)+
− d(c)l (t)

]+
+A(c)(t)1[l∈Lout(c)] + µ

(c)
p(l)(t), l ∈ E

(c), (1)

where µ
(c)
l (t) is the allocated transmission rate and d

(c)
l (t)

is the number of packets that are dropped from Q
(c)
l (t). Let

µmax
l denote the capacity of link l. The capacity constraint∑
c∈C µ

(c)
l (t) ≤ µmax

l must be satisfied in every slot. Also, we
impose d(c)l (t) ∈ [0, dmax], where dmax is a system-defined pa-
rameter. Throughout the paper, we assume dmax ≥ Amax+µmax,
where µmax , maxl∈E µmax

l is the maximum link capacity. The
value Amax + µmax is an upper bound to the incoming data

1To simplify the notation we do not allow different sessions to have the
same source. This limitation can be waived without affecting the results.

2Only one such incoming link p(l) exists since G(c) is a tree. Note that
the value of p(l) depends on the multicast session under consideration, and
we abuse the notation to simplify exposition.

Q2
D2

μ2(t)

d2(t) φ2(t)

output link 2

Q1
D1

μ1(t)

d1(t)
φ1(t)

output link 1

μp(1)(t)

input link

discard discard

node

Fig. 1. The proposed queue structure on an node with one incoming and two
outgoing links (we show one session and we omit the session notation). Each
link l = 1, 2 is associated with a transmission queue Ql(t) and a dropping
queue Dl(t).

rate to a node, and our choice of dmax ensures that the packet
dropping rate is large enough so that all transmission queues
can always be stabilized.

Let d̃(c)l (t) = min[Q
(c)
l (t), d

(c)
l (t)] be the actual packets

dropped from Q
(c)
l (t) in slot t, which can be smaller than

d
(c)
l (t) if there are not enough packets to be dropped. To

provide direct control over the amount of dropped packets, we
set up a drop queue D(c)

l (t) associated with each transmission
queue Q(c)

l (t). Before leaving the system, the dropped packets
are “moved” to the drop queue from which they are later
discarded according to the control policy. The drop queue
D

(c)
l (t) evolves across slots according to

D
(c)
l (t+ 1) =

[
D

(c)
l (t)− ϕ(c)

l (t)
]+

+ d̃
(c)
l (t), l ∈ E(c), (2)

where ϕ(c)
l (t) ∈ [0, dmax] is a decision variable that determines

the number of packets that are eventually removed from the
network in slot t. Note that the packets in drop queues D(c)

l (t)
are not going to be transmitted, and therefore it practically
suffices to keep track of the values of D(c)

l (t) only as counters.
Focusing on a network node, our queueing mechanism

works as follows. All arriving packets are replicated to each
transmission queue Q(c)

l (t), for example see Fig. 1. In a slot t,
µ
(c)
l (t) determines the number of session c packets transmitted

on link l, d(c)l (t) decides the number of packets that are
internally moved from Q

(c)
l (t) to the drop queue D(c)

l (t), and
ϕ
(c)
l (t) is the number of packets that are discarded from queue

D
(c)
l (t) and permanently removed from the network. A control

policy chooses the values of the decision variables, µ(c)
l (t),

d
(c)
l (t) and ϕ(c)

l (t) at each slot.

III. THROUGHPUT MAXIMIZATION

In order to introduce the concepts and the notation, we begin
by considering the problem of maximizing the sum throughput
of all receivers in multiple multicast sessions. In Section IV,
we study the more general problem of utility maximization.

A. Flow-Level Characterization

Before we develop the dynamic network control policy,
it is useful to provide a flow-level characterization of the
optimal throughput vector and the optimal packet dropping



3

rates, presented as solutions to linear optimization problems.
These flow-level solutions are useful for proving the optimality
of our control policies. However, the proposed policies solve
these problems in a distributed and dynamic manner without
the need to explicitly compute these solutions.

We define f (c)l to be the average session c data flow rate
over link l and q(c)l the average packet dropping rate at queue
Q

(c)
l . These flow variables must satisfy the flow conservation

and link capacity constraints:

λ(c) = f
(c)
l + q

(c)
l , l ∈ Lout(c), ∀c (3)

f
(c)
p(l) = f

(c)
l + q

(c)
l , l ∈ E(c) \ Lout(c), ∀c (4)∑

c∈C
f
(c)
l ≤ µmax

l , f
(c)
l = 0 if l /∈ G(c), l ∈ E, (5)

The packet dropping rate vector (q(c)l ) is said to be feasible if
there exist flow variables f (c)l that satisfy (3)-(5).

Let r(c)u denote the throughput of receiver u ∈ U (c). Let Λ
be the set of feasible throughput vectors (r

(c)
u ). We have

Λ =

{
(r(c)u )

∣∣∣∣∣ (3)-(5) hold, r(c)u = f
(c)
lu

f
(c)
l , q

(c)
l ≥ 0

}
, (6)

where lu is the incoming link of the receiver u in session c.
In (6), r(c)u = f

(c)
lu

states that the throughput of a receiver is
equal to its incoming flow rate.

The problem of maximizing the sum throughput of all
receivers in the network is

maximize
∑
c,u

r(c)u , subject to (r(c)u ) ∈ Λ. (7)

It is useful to consider an equivalent optimization problem that
minimizes packet dropping rates. Let E(c)

u denote the set of
links that form the path from the source node c to a receiver
u. Summing (4) over l ∈ E(c)

u and using r(c)u = f
(c)
lu

, we have

r(c)u = λ(c) −
∑
l∈E(c)

u

q
(c)
l , (8)

which states that the throughput r(c)u of receiver u is equal to
the exogenous data arrival rate less the sum of packet dropping
rates along the path E(c)

u to u. Summing (8) over all receivers
u ∈ U (c) in a session, the total session c throughput is∑

u∈U(c)

r(c)u =
∣∣∣U (c)

∣∣∣λ(c) −∑
l∈E

m
(c)
l q

(c)
l , (9)

where m(c)
l is the number of session c receivers connected to

their source via link l. From (9) we see that maximizing the
total throughput of session c is equivalent to minimizing the
weighted packet dropping rate

∑
l∈Em

(c)
l q

(c)
l . Consequently,

the throughput maximization problem (7) is equivalent to the
minimization problem

minimize
∑
c,l

m
(c)
l q

(c)
l , subject to (q

(c)
l ) feasible. (10)

Next, we design a control policy that stabilizes all queues
in the network and achieves optimal packet dropping rates;
from the equivalence of (7) and (10), our policy achieves the
maximum total throughput as well.

B. Intuition for Packet-Level Control

To measure the degree of congestion in the network, we
construct a strictly increasing function of the queue backlogs
Q

(c)
l (t) and D

(c)
l (t), i.e., we define the weighted quadratic

Lyapunov function

L(t) =
1

2

∑
c

∑
l∈E

m
(c)
l ([Q

(c)
l (t)]2 + [D

(c)
l (t)]2).

The quadratic terms are weighted by m(c)
l because the impor-

tance of a queue is proportional to the number of receivers
connected to that queue. Let H(t) = (Q

(c)
l (t);D

(c)
l (t)) be the

queue backlog vector in slot t. Define the Lyapunov drift

∆(t) = E [L(t+ 1)− L(t) | H(t)] (11)

as the expected difference of the congestion measure L(t) over
a slot. A control policy that minimizes the Lyapunov drift in
every slot suffices to stabilize the network and keep the queue
backlogs bounded [5].

Recall from (10), that we also seek to minimize the
weighted time-average packet dropping rate∑
c,l

m
(c)
l q

(c)
l =

∑
c,l

m
(c)
l d

(c)

l ,
∑
c,l

m
(c)
l lim

t→∞

1

t

t−1∑
τ=0

E[d̃(c)l (t)].

(12)
If a drop queue D(c)

l (t) is stable, then from queueing theory
its arrival rate must be less than or equal to its time-average
service rate, i.e., from (2) we have

lim
t→∞

1

t

t−1∑
τ=0

E[d̃(c)l (t)] ≤ lim
t→∞

1

t

t−1∑
τ=0

E[ϕ(c)
l (t)]. (13)

Our approach forces this bound to be tight, and hence mini-
mizing (12) can be achieved by minimizing its upper bound
in (13), provided all D(c)

l (t) queues are stable. In fact, it suf-
fices to minimize in every slot the sum

∑
c,lm

(c)
l EH [ϕ

(c)
l (t)],

where EH [·] is a compact notation for the conditional expec-
tation E [· | H(t)].

Minimizing both the Lyapunov drift ∆(t) and the sum∑
c,lm

(c)
l EH [ϕ

(c)
l (t)] induces a conflict, because the network

becomes more congested when less packets are dropped. It is
therefore natural to consider minimizing a weighted sum of
these two metrics,

∆(t) + V
∑
c,l

m
(c)
l EH [ϕ

(c)
l (t)], (14)

where V > 0 is predefined parameter that reflects the relative
importance of minimum packet dropping to queue stability.
As we will see, V also controls a tradeoff between the per-
formance gap of our policy from optimality and the required
finite buffer size in the transmission queues Q(c)

l (t).

C. The Proposed Policy

Our policy arises from the minimization of (14). Performing
standard calculation of the Lyapunov drift we obtain a bound

(14) ≤ B1 +
∑

c,l∈Lout(c)

m
(c)
l Q

(c)
l (t)λ(c)

︸ ︷︷ ︸
constant



4

−
∑
c,l

m
(c)
l EH [d

(c)
l (t)]

(
Q

(c)
l (t)−D(c)

l (t)
)

︸ ︷︷ ︸
dropping

−
∑
c,l

m
(c)
l EH [ϕ

(c)
l ]
(
D

(c)
l (t)− V

)
︸ ︷︷ ︸

discarding

−
∑
c,l

EH [µ
(c)
l (t)]W

(c)
l (t)︸ ︷︷ ︸

scheduling

(15)

where B1 > 0 is a finite constant given in the report [11] and

W
(c)
l (t) , m

(c)
l Q

(c)
l (t)−

∑
l′:p(l′)=l

m
(c)
l′ Q

(c)
l′ (t) (16)

is the weighted differential backlog. Fig. 2 gives an example
calculation of W (c)

l (t). Next, we propose a throughput-optimal
policy that is designed to minimize the RHS of (15) at each
slot.

Maximum Multicast Throughput (MMT) Policy

Packet Dropping: Each transmission queue Q(c)
l (t) moves

min{d(c)l (t), Q
(c)
l (t)} packets to its drop queue D(c)

l (t) at the
end of slot t, where

d
(c)
l (t) =

{
dmax if Q(c)

l (t) > D
(c)
l (t)

0 otherwise.
(17)

The drop queue D(c)
l (t) removes min{ϕ(c)

l (t), D
(c)
l (t)} pack-

ets from the network according to

ϕ
(c)
l (t) =

{
dmax if D(c)

l (t) > V

0 otherwise.
(18)

Scheduling: Let Cl be the set of multicast sessions that
use link l. Define W ∗l (t) = maxc∈ClW

(c)
l (t) and let c∗l be

a maximizer session (ties are broken arbitrarily). We allocate
the link rate

µ
(c∗l )
l (t) =

{
µmax
l if W ∗l (t) > 0

0 otherwise.
(19)

Let µ(c)
l (t) = 0 for all the other sessions c ∈ Cl \ {c∗l }.

Observe that (17) minimizes the dropping term of (15),
(18) minimizes the discarding term and (19) minimizes the
scheduling term. Since the first two terms in (15) are constant,
we conclude that MMT minimizes the RHS of (15).

We note that the policy operates in a distributed manner
using only locally available information. For the computation
of W (c)

l (t), we require knowledge of the neighbor backlogs.
As shown in prior work, this is not restrictive for practical
applications, e.g. see [12]. Also, delayed backlog information
is sufficient for throughput optimality, see [13, §4.7].

D. Performance Evaluation of MMT

Due to the dropping mechanism in (17)-(18), Q(c)
l (t) and

D
(c)
l (t) are deterministically bounded. Applying the approach

3 receivers

1 receiver

5 receivers

1

2

3

4

m2

m3

m4

Q
(c)
1

Q
(c)
2

Q
(c)
3

Q
(c)
4

Fig. 2. Illustration of the differential backlog calculation in MMT policy;
W

(c)
1 = 9Q

(c)
1 − 3Q

(c)
2 −Q(c)

3 − 5Q
(c)
4 .

of [14] we have the following result.

Lemma 1. All queues Q(c)
l (t) and D

(c)
l (t) are deterministi-

cally bounded by

Q
(c)
l (t) ≤ V + 2dmax, D

(c)
l (t) ≤ V + dmax, ∀l, c, t.

Hence, a buffer size of V +2dmax is sufficient to avoid unex-
pected queue overflow at Q(c)

l (t). The MMT policy achieves
near-optimal total throughput as the following theorem asserts.

Theorem 1 (Optimality of MMT). The MMT policy yields
the total throughput satisfying∑

c,u

r(c)u ≥
∑
c,u

r(c)∗u − B1

V
.

Where
r(c)u , lim

t→∞

1

t

t−1∑
τ=0

E
[
µ̃
(c)
lu

(t)
]

is the throughput of receiver u in multicast session c and
(r

(c)∗
u ) is a solution to (7). The performance gap B1/V can be

made arbitrarily small by choosing a sufficiently large V > 0.
The technical report [11] includes the proof of Theorem 1.

E. Simulation of MMT

We illustrate how MMT adapts to changing conditions
via simulations. Consider the multicast scenario of Fig. 3.
Two multicast sessions share link (a, b). The set of multicast
receivers are U (1) = {b, c} for session 1 and U (2) = {b, d, e}
for session 2. Links (b, d) and (b, e) have capacity x, while the
rest links have unit capacities, i.e. 1packet/slot. Both sessions
have unit arrival rate. We seek to maximize total throughput.

Observe that throughput maximization depends crucially
on the value of x. For example, if x = 1, then maximum
throughput is achieved by allocating all the resources of link
(a, b) to session 2, since session 2 has three receivers and
session 1 has two. If on the other hand x = 0, then maximum
throughput is achieved by allocating all the resources of link
(a, b) to session 1. In general, for x ∈ [0, 1], throughput is
maximized if the allocation on link (a, b) is x to session 2
and 1−x to session 1. Note, that the packet dropping decision
of node {a} depends on the quality of links (b, d) and (b, e),
information which is not directly available at {a}.

In the simulation we vary the value x. Initially x = 1 and
gradually x reduces in steps of 0.1. Fig. 4 (left) shows the
receiver c throughput. According to the above discussion, the



5

1

a

c

2

1

d

e

1

1
1

x

x
b

U (1) = {b, c}

U (2) = {b, d, e}
Fig. 3. An example of multirate multicast with two sessions. Session 1 uses
the link set E(1) = {(1, a), (a, b), (b, c)} and session 2 uses the link set
E(2) = {(2, a), (a, b), (b, d), (b, e)}. The set of receivers are denoted with
U(1), U(2). Numbers on links indicate capacities.

optimal average throughput is equal to 1−x, showcased in the
Figure with gray line. The simulations showed that the average
throughput of MMT is equal to the optimal. Hence, we show
the instantaneous throughput averaged in moving windows of
100 slots. At each interval, the throughput converges quickly
to the optimal, which shows how MMT adapts to changing
conditions.

In Fig. 4 (right), we showcase the backlog at node b with
packets destined to node c, for the same sample path. In this
simulation we have used V = 25 and dmax = 5 and by
Lemma 1, the backlog is upper bounded by 35 packets. In
the simulations, the backlog never exceeds 25 packets despite
the link quality variations and the randomness of the arrivals.

IV. UTILITY MAXIMIZATION

Next we consider the per-receiver NUM problem. Solving
this general problem allows to use different utility functions
to achieve several objectives such as maximum throughput
(studied separately in the previous section), α−fairness which
includes proportional fairness and max-min fairness as spe-
cial cases, user priority, and satisfying user-specific quality
requirements.

A. Per-Receiver NUM Problem Formulation

In multicast session c, a receiver u has a utility function g(c)u ,
which is assumed to be concave, increasing and continuously
differentiable with bounded derivatives.3 Consider the per-
receiver NUM problem:

maximize
∑
c,u

g(c)u (r(c)u ) (20)

subject to (r(c)u ) ∈ Λ.
Define the auxiliary function

h(c)u (x) , g(c)u (x)− θx,
where θ > 0 is a parameter decided later. Then, maximizing
the total utility

∑
c,u g

(c)
u (r

(c)
u ) is equivalent to maximizing∑

c,u

(
h(c)u (r(c)u ) + θ r(c)u

)
3We assume [g

(c)
u ]′(x) ≤ [g

(c)
u ]′(0) < ∞. Utility functions that have

unbounded derivatives as x → 0, such as log(x), can be approximated by
those with bounded derivatives. For example, we can approximate log(x) by
log(x+ ξ) for some small ξ > 0.

0 1 0 0 0 2 0 0 0 3 0 0 00 , 0

0 , 1

0 , 2

0 , 3

0 , 4

 

 

                        
 

receiver c throughput
optimal
MMT

simulation time (slots)
0 1 0 0 0 2 0 0 0 3 0 0 00

1 0

2 0

3 0

4 0

5 0

 

 

             
node b backlog
session 1

simulation time (slots)
Fig. 4. Performance when varying quality for links (b, d), (b, e) in the
topology of Fig. 3. The left Figure compares MMT to the optimal average
throughput of receiver c. The right Figure shows the backlog of node b with
packets for transmission to receiver c.

=
∑
c,u

h(c)u (r(c)u ) + θ
∑
c,u

(
λ(c) −

∑
l∈E(c)

u

q
(c)
l

)
=
∑
c,u

h(c)u (r(c)u )− θ
∑
c,l

m
(c)
l q

(c)
l + θ

∑
c,u

λ(c), (21)

where the last sum is an (unknown) constant. In what follows,
we modify our mechanism so that by controlling functions
µ
(c)
l (t), d

(c)
l (t), ϕ

(c)
l (t) and a new virtual queue which will

introduce next, the system is driven to the solution of (21).

B. Receiver virtual queue Z(c)
u (t)

At each multicast receiver u, we set up the virtual queue
Z

(c)
u (t), which tracks the deficit/surplus of session c packets

received at that user and evolves as

Z(c)
u (t+ 1) = [Z(c)

u (t)− ν(c)u (t)]+ + µ̃
(c)
lu

(t),

where lu ∈ E(c)
u is the incoming link of node u, and

µ̃
(c)
lu

(t) = min
[
Q

(c)
lu

(t), µ
(c)
lu

(t)
]

is the actual number of packets delivered to that user. The
departures ν(c)u (t) are controlled by the policy and chosen in
the interval [0, νmax], we choose νmax below. The functionality
of this virtual queue is to track the urgency of a receiver to ob-
tain more packets: if Z(c)

u (t) is small, receiver u must urgently
obtain packets for the maximum utility to be preserved.

We also define the virtual pressure for each receiver u which
is regulated by the virtual queue:

Y (c)
u (t) ,

{
wew(Z(c)

u (t)−ζ), if Z(c)
u (t) ≥ ζ,

−wew(ζ−Z(c)
u (t)), otherwise,

(22)

where w, ζ are positive parameters whose value will be chosen
later. Note, that in normal backpressure, the pressure of a
destination node is zero, while in our policy Y

(c)
u (t) can

take positive or even negative values. The sign of Y (c)
u (t)

indicates the urgency of the particular receiver to obtain more
or less packets according to the requested objective. Indeed,
the behavior of Y (c)

u (t) is controlled by ν(c)u (t), which as we
will see shortly, is chosen according to the utility function.



6

C. The Proposed Policy

Let H(t) = (Q
(c)
l (t);D

(c)
l (t);Z

(c)
u (t)) be the joint queue

backlog vector in slot t. Define the Lyapunov function

L(t) =
1

2

∑
c,l

m
(c)
l

(
[Q

(c)
l (t)]2 + [D

(c)
l (t)]2

)
+

1

2

∑
c,u

(
ew(Z(c)

u (t)−ζ) + ew(ζ−Z(c)
u (t))

)
.

Note, that the Lyapunov function is composed of two terms,
the quadratic term is identical to the Lyapunov function used in
throughput maximization section, while the exponential term
is identical to the one used for receiver-based flow control for
unicast sessions in [15].

Recall the definition of Lyapunov drift ∆(t) from (11). In
order to solve the problem in (21) we define the weighted
objective:

∆(t) + V

θ∑
c,l

m
(c)
l EH

[
ϕ
(c)
l (t)

]
−
∑
c,u

EH
[
h(c)u (ν(c)u (t))

] .
(23)

Using standard drift derivation techniques we obtain the fol-
lowing bound

(23) ≤ B2 +
∑

c,l∈Lout(c)

m
(c)
l Q

(c)
l (t)λ(c) +

ε

2

∑
uc

Y (c)
u (t)

︸ ︷︷ ︸
(constant)

−
∑
c,l

m
(c)
l EH [d

(c)
l (t)](Q

(c)
l (t)−D(c)

l (t))︸ ︷︷ ︸
(dropping)

−
∑
c,l

m
(c)
l EH [ϕ

(c)
l (t)](D

(c)
l (t)− V θ)︸ ︷︷ ︸

(discarding)

−
∑
uc

EH
{
V h(c)u (ν(c)u (t)) + Y (c)

u (t)ν(c)u (t)
}

︸ ︷︷ ︸
(flow control)

− Ψ(t)︸︷︷︸
(scheduling)

(24)
where ε > 0 is a parameter, B2 is a large constant defined in
[11] and

Ψ(t) , −
∑
uc

EH [µ
(c)
lu

(t)]Y (c)
u (t)

+
∑
c,l

m
(c)
l Q

(c)
l (t)EH

[
µ
(c)
l (t)− µ(c)

p(l)(t)
]
.

Let 1(c)[l,u] be the indicator function on the event that the tail
node of l on G(c) is a receiver u ∈ U (c). Then, define the
weighted differential backlog as

W
(c)
l (t) = m

(c)
l Q

(c)
l (t)−

∑
l′: p(l′)=l

m
(c)
l′ Q

(c)
l′ (t)−1

(c)
[l,u]Y

(c)
u (t).

(25)
Observe that the virtual pressure Y (c)

u (t) is applied only if the
tail node of l is a receiver for this session. By rearranging

TABLE I
PARAMETER SELECTION GUIDELINES.

Parameter Explanation Suggested values
m

(c)
l number of session c users connected to

source c through link l
problem defined

µmax
l capacity of link l problem defined
µmax maximum link capacity maxl µ

max
l

dmax drop batch size dmax ≥ Amax + µmax
ε utility gap parameter > 0

νmax maximum value for ν(c)
u (t) µmax + ε/2

δmax bound on |ν(c)
u (t)− µ(c)

lu
(t)| max[νmax, µmax]

w multiplier in (22) ε
δ2max

e−ε/δmax

ζ central value for Z(c)
u (t) ≥ νmax

g(c)u (x) user utility function objective specific
θ upper bound on [g(c)u ]′(x), x ≥ ε maxu,c[g

(c)
u ]′(0)

h(c)
u (x) auxiliary function g(c)u (x)− θx
V utility gap/backlog size tradeoff V θ + 2dmax ≥ w

terms, we have

Ψ(t) =
∑
c,l

EH [µ
(c)
l (t)]W

(c)
l (t).

We design our Maximum Multicast Utility (MMU) policy to
minimize the RHS of (24). To achieve this, we add a receiver-
end flow controller, similar to the one used in [15].

Maximum Multicast Utility (MMU) Policy

Parameter Selection: Choose positive parameters V , dmax,
νmax, w, ζ, and θ as summarized in the Table I. For a
discussion on these parameter choices see [14, §V-C]. Initialize
the queues with Q(c)

l (0) = 0, Z(c)
u (0) = ζ + 1

w log
(
V θ
w

)
and

D
(c)
l (0) = V θ.
Packet Dropping: Same as in MMT policy.
Receiver-End Flow Control: Choose ν(c)u (t) to be the solu-

tion to

maximize V h(c)u (x) + Y (c)
u (t)x (26)

subject to 0 ≤ x ≤ νmax, (27)

where Y (c)
u (t) is given in (22).

Scheduling: Same as in MMT policy, except that we
use (25) as the value of W (c)

l (t), instead of (16).

D. Performance Evaluation of MMU

Lemma 2. Under the MMU policy, all queues Q
(c)
l (t),

D
(c)
l (t), and Z(c)

u (t) are deterministically bounded by

Q
(c)
l (t) ≤ V θ + 2dmax, D

(c)
l (t) ≤ V θ + dmax, ∀c, l, t,

Z(c)
u (t) ≤ ζ + 1

w
log

(
V θ + 2dmax

w

)
+ µmax, ∀c, u, t.

Theorem 2 (Optimality of MMU). The MMU policy achieves
the long-term utility satisfying∑
c,u

g(c)u (r(c)u ) ≥
∑
uc

g(c)u (r(c)∗u )−B2

V
− 3ε

2

∑
c,u

(
[g(c)u ]′(0)+θ

)
,

(28)
where (r

(c)∗
u ) is the utility-optimal throughput vector.

E. Achieving Throughput Requirements

We show how to use the MMU policy to deliver a video
stream to users with strict throughput requirements. Consider



7

TABLE II
MMU SIMULATION RESULTS FOR PRIORITIZING BASE LAYER PACKETS.

Session 1 Session 2
receivers b c b d e
stream rate 0.996 0.998
ξ
(c)
u 0.2 0.2 0.2 0.2 0.2
r
(c)
u 0.1948 0.1948 0.805 0.805 0.805

base layer packets breakdown
stream rate 0.1997 0.199
received rate 0.1944 0.1944 0.199 0.199 0.199
delivery ratio 97.35% 97.35% 100% 100% 100%

enhancement layer packets breakdown
stream rate 0.7963 0.799
received rate 0.0003 0.0003 0.606 0.606 0.606
delivery ratio 0.037% 0.037% 75.84% 75.84% 75.84%

the optimization problem:

maximize
∑

c,u∈U(c)

g(c)u (r(c)u ) (29)

subject to (r(c)u ) ∈ Λ,
(r(c)u ) ≥ (ξ(c)u ),

where the inequality is element-wise and ξ
(c)
u denotes the

throughput requirement of session c receiver u. We assume
problem (29) admits a feasible solution. In order to solve (29)
using MMU, we use the penalty method, see [16, §4.7]. Define
the penalty function

π
[
(x(c)u )

]
, K

∑
c,u∈U(c)

(
ξ(c)u − x(c)u

)+
,

where (x
(c)
u ) is a vector with one element for every receiver-

session pair. If all requirements are satisfied (i.e. r(c)u ≥ ξ
(c)
u ,

∀u) then π
[
(r

(c)
u )
]

= 0. If some requirement is violated,
then π

[
(r

(c)
u )
]

increases proportionally to K and to the norm-
1 distance of (r

(c)
u ) from the feasible set. Also note that π

is convex and thus −π is concave. Next, consider a convex
optimization problem:

maximize
∑

c,u∈U(c)

[
g(c)u (r(c)u )−K

(
ξ(c)u − r(c)u

)+]
(30)

subject to (r(c)u ) ∈ Λ,
By letting K → ∞, the solution of (30) converges to the
solution of (29) [16]. A practical approach is to pick a “large”
finite value for K.

F. Simulations: Prioritizing Base Layer Packets

In multimedia streaming with layer coding, the stream
reconstruction requires the reception of specific data packets,
belonging to the base layer. Then, the reception of additional
enhancement layer packets improves the quality of the stream.
Therefore, a reasonable strategy is to maximize the number of
enhancement layer packets subject to the correct reception of
base layer packets at each receiver. We show next how to tune
MMU to have such a behavior.

TABLE III
BASIC CONFIGURATION OF NITOS NODES

Model Icarus nodes
CPU Intel i7-2600 Proc., 8M Cache, at 3.40GHz

RAM Kingston 4 GB HYPERX BLU DDR3
Storage Solid State Drive 60GB

WiFi cards two Atheros 802.11a/b/g/n (MIMO)
OS 3.2.0-31-generic Ubuntu precise

Driver compat-wireless version 3.6.6-1-snpc

We revisit the example of Fig. 3 and set x = 1 so
that all links have unit capacities. Next, we tag the packets
belonging to the base layer video to distinguish them from the
enhancement layer packets. The video stream of each session
is modeled by a superposition of two Poisson processes with
λbase = 0.2 and λenh = 0.8.

Using the penalty approach explained in the previous sub-
section, it is possible to achieve throughput maximization
subject to rate 0.2 at each receiver. We choose g

(1)
u (x) =

g
(2)
u (x) = x, ξ(1)u = 0.2 and ξ

(2)
u = 0.2 for all u ∈

U (1), U (2) respectively. However, additionally to achieving a
specific throughput rate requirement, we require the reception
of specific packets. To cope with this added constraint, we
impose a strict priority rule at all transmission queues Q(c)

l :
enhancement layer packets are only served if there are no base
layer packets left in the queue.

The resulting experiments for this scenario are shown in
Table II. The combination of MMU with the priority rule
provides delivery ratio of base layer packets very close to the
ideal 100%. The small loss is attributed to randomness of the
arrivals. Moreover, when the base layer packet delivery ratio
is less than 100%, the enhancement layer counterpart is very
small. Conclusively, our policy achieves the high-level goal to
combine guaranteed delivery with optimal performance.

V. EXPERIMENTATION IN WIRELESS TESTBED

To demonstrate the practicality of the MMU policy, we
develop a prototype implementation in NITOS testbed [17].
NITOS is a heterogeneous outdoor testbed, where two
types of networks are used: a wireless network with IEEE
802.11a/b/g/n protocol and a wired network using Gbit Eth-
ernet. Being partly deployed in a building roof, NITOS is a
non-RF-isolated wireless testbed. To eliminate interference we
employed 802.11a, which is not used by commercial 802.11
products in Greece. The NITOS nodes feature a 3.4GHz
Intel i7 processor and two Atheros wireless cards. The main
hardware and software specifications of the nodes are depicted
in Table III.

A. Implementation Framework

The implementation is based on the Click Modular router
framework [18]. Click facilitates experimentation and evalua-
tion of scheduling and flow control algorithms in real systems.
It runs as a user-level daemon at each node and via the libpcap
library it provides full control on packet transmission. Our
implemented framework includes mechanisms for estimating
channel quality, forming a queue structure, exchanging queue
backlog information, and splitting time into virtual slots.



8

Estimating Channel Quality. To evaluate channel quality,
we adopted the ETT estimation algorithm of Roofnet [19].
Nodes periodically broadcast probes which are used to esti-
mate the successful transmission probability. With this process
every node periodically obtains a table with the qualities for
each channel rate/neighbor pair. Using this table, the µmax

l

parameters are determined. This mechanism is known to incur
negligible throughput overhead [19], [20].

Queue Structure. We implement the transmission queues
Q

(c)
l on each node and we create a counter for each D(c)

l , Z
(c)
l

virtual queue. The counter Z(c)
l may take non-integer values.

Each of these internal queues/counters is created upon the
arrival of the first packet of a new session. This allows session
generation “on the fly”. The queues are removed after a period
of inactivity.

Exchanging Queue Backlog Information. To compute
W

(c)
l from (25), each node broadcasts periodically the backlog

size of all its transmission queues Q
(c)
l . If a node u is a

receiver for some session c, it broadcasts Q(c)
l +Y

(c)
u instead.

The broadcast messaging is repeated once every second.
Prior experiments suggest that more frequent broadcasts incur
visible throughput overhead, while rarer broadcasts may affect
the delay performance due to obsolete queue information.

In the proposed schemes, the routing is based on fixed
multicast trees. Thus m

(c)
l parameters are predefined and

known. However, in our implementation, it is possible to
use the backlog exchange mechanism to transport information
about m(c)

l , should these be time-varying.
Virtual Slots. In order to simplify the implementation we

use the concept of the virtual slot. Each node keeps an internal
timer that expires once every slot. Upon counter expiration the
policy selects the next queue to be served and for the duration
of the next slot the decision remains fixed. The slot duration
is set to 100msecs, equal to 1/10 of the broadcasts period.
Small values for the slot duration improve delay and reduce
throughput fluctuations but burden the CPU of the device. We
leave the investigation of optimum slot duration for future
work. We note that the implementation of MMU is not tied to
the idea of the virtual slot.

B. Policy Implementation

We modify our proposed policy so that it can operate on
a network with wireless channels. Due to interference, some
wireless links cannot be activated simultaneously. A well
known link activation policy is the maxweight policy, proposed
in [21] for stabilizing mobile packet networks. Maxweight
activates at each slot the set of links that maximize the sum
products

∑
l µ

max
l W

(c)
l (t), effectively preferring links with

higher capacity. In our setting, the activation of the trans-
mitting nodes is automatically selected by the IEEE 802.11
protocol. It remains to choose the activation of a session and
a receiving link, subject to the activated nodes. Using intuition
from the maxweight policy we propose the following heuristic.

Maximum Multicast Utility for Wireless (MMU-W) Policy

Parameter Selection, Packet Dropping, Receiver-End Flow
Control, Scheduling on Wired Links: same as in MMU.

Scheduling on Wireless Links: Calculate W (c)
l (t) using (25).

On a wireless node, choose the link-session pair

(l∗, c∗) ∈ argmax(l,c) µ
max
l W

(c)
l (t)1

[W
(c)
l (t)>0]

ties broken arbitrarily. Then, allocate the rate

µ
(c∗)
l∗ (t) =

{
µmax
l∗ if W (c∗)

l∗ (t) > 0

0 otherwise.

Let µ(c)
l (t) = 0 for all the other link-session pairs.

C. Experiments and Results

We conduct experiments on the specific topology of Fig-
ure 5. Five NITOS nodes are used: Alice and Bob are
connected via Ethernet while Bob is connected to the other
three nodes via wireless. The nodes are configured to run the
MMU-W policy. The wireless links use fixed physical rates
instead of the 802.11 rate adaptation scheme. In particular we
set the physical rates to 18Mb/s, 6Mb/s and 6Mb/s for the
links to Carol, Dave, and Erin respectively. The physical rate
of the wired connection is 1Gb/s.

We consider two sessions, A and B, each with traffic rate
14Mb/s. The source node for both sessions is Alice and the
multicast receivers are shown in Fig. 5. To generate packets
we use two UDP streams created with the Iperf tool [22]. We
run the Iperf tool on external nodes to avoid polluting the CPU
measurements. The receiver rate requirements are 4.5Mb/s for
Bob, ξCMb/s for Carol, 1.7Mb/s for Dave and ξEMb/s for Erin,
where the values ξC, ξE are chosen differently per experiment.
The objective is to satisfy all receiver rate requirements as
well as maximize throughput.

D. Throughput

We show the measured instantaneous and average through-
put for two scenarios. The instantaneous throughput is com-
puted as the average over 1sec periods. In the first scenario
we choose (ξC, ξE) = (2.8, 1.7), see Fig. 6. The objective is
achieved because all receiver requirements are satisfied and
the excess wireless resource is allocated to the receiver with
the highest capacity, i.e. Carol. We observed that the wireless
medium was fully utilized. In the second scenario, we reverse
the requirements of Carol and Erin, (ξC, ξE) = (1.7, 2.8), see
Fig. 7. The theoretical total throughput is smaller in this case
due to Erin’s low physical rate and high requirement.

E. CPU Occupancy

Our framework is implemented on user-level click. We
observed the user-level CPU occupancy using the vmstat
command. The occupancy was 8-10% for the whole duration
of experiments, which is encouraging. We note, that a kernel-
level implementation can improve this figure further. The CPU



9

Fig. 5. Experiment topology with five NITOS nodes. Two sessions A and
B are generated at Alice, forwarded to Bob via a wired connection, and then
distributed to Carol, Dave, and Erin through wireless. The Figure shows the
rate requirement per receiver (in parentheses) and the physical rate per link.

usage was the same at all nodes, indicating that our policy
does not incur extra burden on the sources. Additionally, it
was largely independent of data rates used, which implies
that packet operations and queue maintenance have a minor
contribution to the CPU occupancy. We plan to present analytic
CPU experiments of the policy in future work.

VI. CONCLUSION

We proposed a distributed control scheme that maximizes
utility in multirate multicast. The performance is analyzed and
shown to be near-optimal. Several enhancements of the policy
are described including a priority rule for base layer packets,
and a modification for 802.11 wireless devices. The scheme
is implemented in a wireless testbed and its applicability is
demonstrated. In future work, we plan to derive the optimal
policy for general wireless networks and to experiment further
in larger topologies, investigating delay and CPU occupancy.

REFERENCES

[1] X. Li, S. Paul, and M. Ammar, “Layered Video Multicast with Retrans-
missions (LVMR): Evaluation of Hierarchical Rate Control,” in IEEE
INFOCOM, vol. 3, 1998, pp. 1062–1072.

[2] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven Layered
Multicast,” in ACM SIGCOMM, 1996, pp. 117–130.

[3] S. Shakkottai and R. Srikant, “Network Optimization and Control,”
Found. Trends Netw., vol. 2, no. 3, pp. 271–379, Jan. 2007.

[4] S. Sarkar and L. Tassiulas, “Fair Allocation of Utilities in Multirate
Multicast Networks: A Framework for Unifying Diverse Fairness Ob-
jectives,” IEEE Trans. Autom. Control, vol. 47, no. 6, pp. 931–944, Aug.
2002.

[5] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems, S. lectures on Communica-
tion networks, Ed. Morgan & Claypool, 2010, vol. 3, no. 1.

[6] S. Sarkar and L. Tassiulas, “A Framework for Routing and Congestion
Control for Multicast Information Flows,” IEEE Trans. Inf. Theory,
vol. 48, no. 10, pp. 2690 – 2708, Oct. 2002.

[7] K. Kar, S. Sarkar, and L. Tassiulas, “A Scalable Low-overhead Rate
Control Algorithm for Multirate Multicast Sessions,” IEEE J. Sel. Areas
Commun., vol. 20, no. 8, pp. 1541–1557, Oct. 2002.

[8] S. Deb and R. Srikant, “Congestion Control for Fair Resource Allocation
in Networks with Multicast Flows,” IEEE/ACM Trans. Netw., vol. 12,
no. 2, pp. 274–285, Apr. 2004.

[9] L. Bui, R. Srikant, and A. Stolyar, “Optimal Resource Allocation for
Multicast Flows in Multihop Wireless Networks,” in IEEE CDC, 2007,
pp. 1134 –1139.

[10] S. Sarkar and L. Tassiulas, “Back Pressure Based Multicast Scheduling
for Fair Bandwidth Allocation,” IEEE Trans. Neural Netw., vol. 16,
no. 5, pp. 1279–1290, Sep. 2005.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 00
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0

  

 

               
instantaneous

time (sec)

Carol
Dave
Erin

0

2

4

6

8

1 0

1 2

1 4

 

 

average

Bob Carol Dave Erin

Requirement
Throughput

Fig. 6. Scenario 1: (ξC, ξE) = (2.8, 1.7). Instantaneous and average
throughput (Mb/s) are shown.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 00
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0

  

 

               
instantaneous

time (sec)

Carol
Dave
Erin

0

2

4

6

8

1 0

1 2

1 4

 

 

average

Bob Carol Dave Erin

Requirement
Throughput

Fig. 7. Scenario 2: (ξC, ξE) = (1.7, 2.8). Instantaneous and average
throughput (Mb/s) are shown.

[11] G. S. Paschos, C.-P. Li, E. Modiano, K. Choumas, and T. Korakis,
“Multirate Multicast: Optimal Algorithms and Implementation,” https:
//sites.google.com/site/gpasxos/multicast.pdf.

[12] R. Laufer, T. Salonidis, H. Lundgren, and P. Le Guyadec, “A Cross-
Layer Backpressure Architecture for Wireless Multihop Networks,”
IEEE/ACM Trans. Netw., no. 99, pp. 1–1, 2013.

[13] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends Netw., vol. 1,
no. 1, pp. 1–144, Apr. 2006.

[14] C. Li and E. Modiano, “Receiver-Based Flow Control for Networks in
Overload,” http://arxiv.org/abs/1207.6354, 2012.

[15] ——, “Receiver-Based Flow Control for Networks in Overload,” in
IEEE INFOCOM, 2013.

[16] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific,
Sep. 1999.

[17] “NITLab: Network Implementation Testbed Laboratory,” http://nitlab.
inf.uth.gr/NITlab/index.php/testbed.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, Aug. 2000.

[19] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and
Evaluation of an Unplanned 802.11b Mesh Network,” in MobiCom,
2005, pp. 31–42.

[20] K. Choumas, T. Korakis, I. Koutsopoulos, and L. Tassiulas, “Implemen-
tation and End-to-end Throughput Evaluation of an IEEE 802.11 Com-
pliant Version of the Enhanced-Backpressure Algorithm,” in Tridentcom,
2012, pp. 64–80.

[21] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[22] “Iperf: The TCP/UDP Bandwidth Measurement Tool,”
http://sourceforge.net/projects/iperf/.

https://sites.google.com/site/gpasxos/multicast.pdf
https://sites.google.com/site/gpasxos/multicast.pdf
http://arxiv.org/abs/1207.6354
http://nitlab.inf.uth.gr/NITlab/index.php/testbed
http://nitlab.inf.uth.gr/NITlab/index.php/testbed
http://sourceforge.net/projects/iperf/

	Introduction
	Related Work

	System Model
	Queueing Structure

	Throughput Maximization
	Flow-Level Characterization
	Intuition for Packet-Level Control
	The Proposed Policy
	Performance Evaluation of MMT
	Simulation of MMT

	Utility maximization
	Per-Receiver NUM Problem Formulation
	Receiver virtual queue Zu(c)(t)
	The Proposed Policy
	Performance Evaluation of MMU
	Achieving Throughput Requirements
	Simulations: Prioritizing Base Layer Packets

	Experimentation in Wireless Testbed
	Implementation Framework
	Policy Implementation
	Experiments and Results
	Throughput
	CPU Occupancy

	Conclusion
	References

